首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this work, investigation of the comparative influence of diverse ionic liquids (ILs) as electrolyte additives on the chiral separation of dansylated amino acids by using Zn(II)‐L‐arginine complex mediated chiral ligand exchange CE (CLE‐CE) was conducted. It has been found that not only the varied substituted group number, but also the alkyl chain length of the substituted group on imidazole ring in the structure of ILs show different influence on chiral separation of the analytes in the CLE‐CE system, which could be understood by their direct influence on EOF. Meanwhile, the variation of anion in the structure of ILs displayed remarkably changed performance and the ILs with Cl? showed the most obvious promoting effect on the chiral separation performance. Among the investigated seven ILs, 1‐butyl‐3‐methylimidazolium chloride was validated to be the proper electrolyte additive in the CLE‐CE system. Moreover, it has been observed that 1‐butyl‐3‐methylimidazolium chloride also has obvious promotive effect on the labeling performance. The results have demonstrated that the ILs with different structures have important relation to their performance in CLE‐CE and to their labeling efficiency in dansylation of the analytes.  相似文献   

2.
Ionic liquids as electrolytes for nonaqueous capillary electrophoresis   总被引:2,自引:0,他引:2  
Acetonitrile is a well-suited medium for nonaqueous capillary electroseparations and enables extending the range of applications of capillary electrophoresis (CE) techniques to more hydrophobic species. In this study, the dialkylimidazolium-based low temperature melting organic salts know as "ionic liquids" (ILs) are used as electrolytes. At room temperature these liquids are miscible with acetonitrile which makes it easy to use them for adjustment of analyte mobility and separation. The anionic part as well as the concentration of an IL influence the general electrophoretic mobility of the buffer system. The separation of different analytes is achieved because they become charged in the presence of ILs in separation media. There is also a possibility for a complex formation between the solute and the electrolyte which alters the mobility of the solute. A selected application of separations of phenols and aromatic acids will be discussed.  相似文献   

3.
Ionic liquids (ILs) were tested as additives to phosphate-acetate buffer for the separation of chlorophenoxy and benzoic herbicide acids. The effects of buffer concentration, buffer pH, IL concentration, and concentration of organic solvent were investigated. It was found that in the presence of 40 mM phosphate-acetate containing 10% acetonitrile at pH 4.5, addition of 10 mM 1-butyl-3-methylimidazoium could reverse EOF. The shoulder-merged peaks of two herbicide acids, 2,4-dichlorobenzoic acid and 3,5-dichlorobenzoic acid, were successfully resolved by the addition of IL cation. Apart from these, results showed different IL cations had different influences on the migration behavior of some of the analytes, while IL anions did not lead to obvious difference on the separation.  相似文献   

4.
The effects of several ionic liquids (ILs) as mobile‐phase additives in HPLC with fluorescence and UV–Vis detection for the determination of six heterocyclic aromatic amines were evaluated using two different C18 stationary phases with moderate silanol activity. The studied ILs were 1‐butyl‐3‐methylimidazolium tetrafluoroborate, 1‐hexyl‐3‐methylimidazolium tetrafluoroborate and 1‐methyl‐3‐octylimidazolium tetrafluoroborate. The optical behaviour of heterocyclic aromatic amines in presence of ILs was studied and the silanol‐suppressing potency of ILs was evaluated for the two stationary phases studied. Several chromatographic parameters were evaluated in the presence or absence of ILs, or using triethylamine, the most common mobile‐phase additive. The best results were achieved using 1 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as mobile‐phase additive and NovaPak® column. In these conditions and with 18% of ACN in the mobile phase, analytical performance of the chromatographic methods using fluorescence and UV–Vis were evaluated, obtaining good precision in all cases (RSD lower than 6.6%) and low LOD (0.001–0.147 μg/mL with UV–Vis and 0.001–0.006 ng/mL with fluorescence detection).  相似文献   

5.
In this study, we report the effects of adding ionic liquids (ILs), as compared to adding conventional molecular organic solvents (MOSs), to aqueous buffer solutions containing molecular micelles in the separation of chiral analyte mixtures in micellar EKC (MEKC). The molecular micelle used in this study was polysodium oleyl-L-leucylvalinate (poly-L-SOLV). The ILs were 1-alkyl-3-methylimidazolium tetrafluoroborate, where the alkyl group was ethyl, butyl, hexyl, or octyl. These ILs were chosen due to their hydrophobicity, good solvating, and electrolyte properties. Thus, it was expected that these ILs would have favorable interactions with chiral analytes and not adversely affect the background current. Common CE buffers, mixed with a molecular micelle, and an IL or a MOS, were used for these chiral separations. The buffers containing an IL in the concentration range of 0.02-0.1 v/v were found to support a reasonable current when an electric field strength of 500 V/cm was applied across the capillary. However, a current break down was observed for the buffers containing more than 60% v/v MOS on application of the above-mentioned electric field. The chiral resolution and selectivity of the analytes were dependent on the concentration and type of IL or MOS used.  相似文献   

6.
In this work 12 different ionic liquids (ILs) have been used added as co‐binders in the preparation of modified carbon paste electrodes (IL–CPEs) used for the voltammetric analysis of dopamine in Britton‐Robinson buffer. The ionic liquids studied were selected based on three main criteria: (1) increasing chain length of alkyl substituents (studying 1‐ethylimidazolium and ethyl, propyl, butyl, hexyl and decylmethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids); (2) nature of the counter ion (dicyanamide, bis(trifluoromethylsulfonyl)imide and hexafluorophosphate) in 1‐butyl‐3‐methylimidazolium ionic liquids; and (3) cation ring structures (1‐butyl‐3‐methylimidazolium, 1‐butyl‐1‐methylpiperidinium, 1‐butyl‐1‐methylpyrrolidinium and 1‐butyl‐3‐methylpyridinium) in bis(trifluoromethylsulfonyl)imide or hexafluorophosphate (1‐butyl‐3‐methylimidazolium or 1‐butyl‐3‐methylpyridinium as cations) ionic liquids. The use of IL as co‐binders in IL–CPE results in a general enhancement of both the sensitivity and the reversibility of dopamine oxidation. In square wave voltammetry experiments, the peak current increased up to a 400 % when 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as co‐binder, as compared to the response found with the unmodified CPE. Experimental data provide evidence that electrostatic and steric effects are the most important ones vis‐à‐vis these electrocatalytic effects on the anodic oxidation of dopamine on IL–CPE. The relative hydrophilicity of dicyanamide anions reduced the electrocatalytic effects of the corresponding ionic liquids, while the use of 1‐ethyl‐3‐methylimidazolium hexafluorophosphate or 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (two relatively small and highly hydrophobic ionic liquids) as co‐binders in IL–CPE resulted in the highest electrocatalytic activity among all of the IL–CPE studied.  相似文献   

7.
The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.  相似文献   

8.
In this paper we report on the novel polymeric membranes for the liquid junction‐free reference electrodes. The membranes contain the ionic liquids (ILs) based on the amino acid anions, namely valine‐, leucine‐, lysine‐ and histidine‐anions, and 1‐butyl‐3‐methylimidazolium cation. Addition of the ILs, and especially of the valine‐based one, to the polymeric plasticized membranes allows significant stabilization of the electrode potential and makes it insensitive to the solution composition. A simple criterion based on the calculated lipophilicities of the cation and anion of the IL is proposed for a priori estimation of its applicability for potential stabilization. The addition of the IL as a microcomponent is found to be advantageous over plasticizing the membrane with the IL due to better potential stability, higher dissociation degree and mobility of the species. The resistance of the novel reference membranes can be tuned by addition of the lipophilic membrane electrolytes, e. g. ETH500. The applicability of the developed reference electrodes is verified in the potentiometric calibration of the indicator K+‐ and Ca2+‐selective electrodes. Implementation of the amino acid‐based ionic liquids with low environmental toxicity can make a significant contribution to the development of nature‐friendly potentiometry.  相似文献   

9.
Multilayers of myoglobin (Mb) with ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4) was assembled on carbon ionic liquid electrode (CILE) based on the electrostatic attraction between the negatively charged Mb and the positively charged imidazolium ion of IL. The CILE was fabricated with 1‐ethyl‐3‐methylimidazolium ethylsulfate ([EMIM]EtOSO3) as the modifier, which exhibited imidazolium ion on the electrode surface. Then Mb molecules were assembled on the surface of CILE step‐by‐step to get a {IL/Mb}n multilayer film modified electrode. UV‐Vis adsorption and FT‐IR spectra indicated that Mb remained its native structure in the IL matrix. In deaerated phosphate buffer solution (pH 7.0) a pair of well‐defined quasi‐reversible redox peaks appeared with the apparent formal potential (E0′) as ‐0.212 V (vs. SCE), which was the characteristic of Mb heme Fe(III)/Fe(II) redox couples. The results indicated that the direct electron transfer of Mb was realized on the modified electrode. The {IL/Mb}n/CILE displayed excellent electrocatalytic ability to the trichloroacetic acid reduction in the concentration range from 2.0 to 22.0 mmol/L with the detection limit of 0.6 mmol/L (3σ). The proposed method provides a new platform to fabricate the third generation biosensor based on the self‐assembly of redox protein with ILs.  相似文献   

10.
This work describes the separation of basic aromatic compounds by capillary electrochromatography employing acidic carrier electrolytes and bare silica as well as strong cation-exchange stationary phases. A mixed-mode separation mechanism was involved, comprising chromatographic interactions (adsorption, ion-exchange) as well as electrophoretic migration. The influence of ion-exchange on the retention/migration of the solutes could be manipulated according to procedures commonly employed in ion chromatography. These include variations of the eluting strength and/or the concentration of the competing ion present in the background electrolyte. Using this approach, separation times could be shortened and changes in selectivity could be achieved for a number of analytes.  相似文献   

11.
1H and 13C NMR spectroscopy is employed to investigate the interaction of water with two imidazolium‐based ionic liquids (ILs), 1‐hexyl‐3‐methylimidazolium bromide ([C6mim]Br) and 1‐octyl‐3‐methylimidazolium bromide ([C8mim]Br), at IL concentrations well above the critical aggregation concentration (CAC). The results are compared with those of the neat samples. To this aim, a detailed analysis of the changes in the 1H chemical shifts, 13C relaxation parameters, and 2D ROESY data due to the presence of water is performed. The results for both neat ILs are consistent with a packed structure where head‐to‐head, head‐to‐tail, and tail‐to‐tail contacts occur and where the site of maximal mobility restriction is at the polar head. At the lowest investigated water content, the presence of water influences mainly the environment around the IL polar head, slowing down the motional dynamics of the aromatic ring with respect to the alkyl chain. At higher water contents this difference diminishes, the motional freedom of the whole molecule increasing. The presence of ROESY cross‐peaks between protons in the polar and apolar IL regions, as well as between protons in non‐neighboring alkyl groups, at all investigated water contents suggests that the alkyl tails are not fully segregated in hydrophobic domains, as expected for micelle‐like structures.  相似文献   

12.
Mo H  Zhu L  Xu W 《Journal of separation science》2008,31(13):2470-2475
Separation of inorganic anions in CE is often a challenging task because the electrophoretic mobilities of inorganic anions are comparable to or even greater than the EOF mobility. In this study, we present the use of ionic liquids (ILs) as background electrolytes (BGEs) in CE of inorganic anions. The 1-alkyl-3-methylimidazolium-based ILs as BGEs dynamically coated the capillary wall and induced a reversed EOF. This allowed the anions to comigrate with the EOF and yielded a rapid separation. Increasing the alkyl chain length of the ILs and BGE concentration can significantly improve the separation resolution. With 40 mM 1-butyl-3-methylimidazolium tetrafluoroborate as BGE, good separations of five model anions (Br-, I-, NO2(-), NO3(-), and SCN-) were achieved in a range of buffer pH values. The separation efficiency was as high as 34 600-155 000, and the RSDs of the migration times were less than 0.8% (n = 5).  相似文献   

13.
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF‐TrFE) has been investigated. 1‐ethyl‐3‐methylimidazolium acetate, [C2mim][OAc], 1‐ethyl‐3‐methylimidazolium triflate, [C2mim][(CF3SO3)], 1‐ethyl‐3‐methylimidazolium lactate, [C2mim][Lactate], 1‐ethyl‐3‐methylimidazolium thiocyanate, [C2mim][SNC] and 1‐ethyl‐3‐methylimidazolium hydrogen sulfate [C2mim][HSO4] have been used in SPE prepared by solvent casting. The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC]>[CF3SO3)]>[HSO4]>[Lactate]>[OAc], which is mainly dependent on the viscosity of the ionic liquid.  相似文献   

14.
Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2]-) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME.  相似文献   

15.
Capillary zone electrophoresis (CZE) with indirect UV detection was developed for the simultaneous determination of inorganic anions and organic acids in environmental samples. Various aromatic acids (benzoic, phthalic, trimellitic, and pyromellitic acids) were evaluated as background electrolytes (BGEs) to give high resolution and detection sensitivity. Co-electroosmotic conditions such as the concentration of BGE, electrolyte pH, and EOF modifier were systematically investigated. Three inorganic anions and ten organic acids were determined simultaneously in 10 min using an electrolyte containing 10 mM phthalic acid, 0.5 mM myristyltrimethylammonium bromide (MTAB), and 5% methanol (MeOH) (v/v) at pH 5.60. Linear plots for the test solutes were obtained in the concentration range 0.01–1.0 mM with detection limits in the range 5–30 μM. The proposed method was successfully demonstrated for the determination of inorganic anions and organic acids in natural water, soil, and plant extracts after direct sample injection.  相似文献   

16.
将聚乙烯基-3-乙基咪唑溴盐离子液体用作毛细管电泳背景电解质添加剂,利用聚合离子液体的阳离子聚合物性质静电吸附到毛细管内表面,成功实现电渗流的有效反转,建立了共电渗流模式下5种核苷类化合物分离的新方法。考察了聚合离子液体浓度、pH值等因素对电渗流的影响。在优化实验条件下,3.1 min内实现了对5种核苷类化合物的快速高效分离;将该方法分别与不加添加剂和加入离子液体单体后的体系进行对比,结果表明,该方法大大缩短了5种核苷类化合物的分析时间,提高了分析效率,最高柱效达95万/m塔板数,分析物的迁移时间RSD均不高于0.38%。该方法简单、快速、重复性好,具有很好的应用前景。  相似文献   

17.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

18.
Ionic liquids (ILs) appear really attractive as electrolyte additives in nonaqueous capillary electrophoresis (NACE). These salts may offer new possibilities of interactions to modulate analyte effective mobilities. The presence of 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIM NTf2) in acetonitrile/alcohol background electrolytes (BGEs) was investigated in this work. The aim of this study was to elucidate the influence of the IL concentration on the electrophoretic behavior of four arylpropionic acids and to identify the interactions between the analytes and the IL cation. The influence on mobility of the IL concentration, the nature and the proportion of the organic solvents, and the concentration of the ionic components of the BGE was first studied by a univariate approach. A four-factor D-optimal experimental design was then applied to provide a deeper insight into analyte interaction with IL cation present both free in BGE and adsorbed onto the capillary wall.  相似文献   

19.
The molecular interactions of the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4], 3‐methyl‐1‐octylimidazolium tetrafluoroborate [C8mim][BF4] and 1‐butyl‐3‐methylimidazolium octylsulfate [C4mim][C8OSO3] are investigated in ethylene glycol (EG) over the whole mole fraction range using fluorescence (steady‐state and time‐resolved), Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. The cybotactic region surrounding the pyrene fluorescent probe exhibits peculiar characteristics for different ILs in the EG‐rich region. The extent of solute–solvent interactions is assessed by determining the deviations of experimentally observed vibronic band intensity ratios of peak 1 to peak 3 of pyrene fluorescence (I1/I3) from a composite I1/I3 value obtained using a preferential solvation model. A distinct vibrational frequency shift for various stretching modes of EG (O? H) or ILs (C? H of ring protons, B? F and S?O of anions) indicates specific interactional preferences of EG toward the IL protons/anion. Splitting of the O? H vibration band of EG at 3000–3700 cm?1 into three separate bands, and analysis of the changes in location and area of these bands as a function of concentration enable precise determination of the effect of ILs on hydrogen bridges of EG. NMR chemical shifts and their deviations from ideality show multiple hydrogen‐bonding interactions of varying strengths between unlike molecules in the mixtures. A comparison of spectroscopic results with thermodynamic properties shows that the mixing microscopic behaviour of the investigated systems is completely different from the macroscopic behaviour, which is primarily governed by the difference in shape, size and nature of the molecules.  相似文献   

20.
A simple and reliable co-electroosmotic capillary electrophoresis system for the fast determination of aromatic acids has been developed by employing poly (1-vinyl-3-butylimidazolium bromide) as the background electrolyte modifier. The polymeric ionic liquid was synthesized by the conventional radical polymerization. The reversed electroosmotic flow was obtained by adding a small amount of the polymeric ionic liquid (0.0006%, w/v) to the electrolyte. To further improve the resolution of aromatic acids, conditions including the concentration of polymeric ionic liquid and pH of background electrolytes were optimized. All eight aromatic acids were baseline resolved in one measurement in a short time (less than 3.5 min) under optimized conditions, 100 mM NaH2PO4 buffer containing 0.006% (w/v) polymeric ionic liquid, pH 6.0. Separation efficiencies were in the range from 355,000 to 943,000 (plates/m). Satisfactory reproducibility on the basis of the migration time of analytes was achieved. RSDs (n = 3) were less than 0.33% except the p-aminobenzoic acid (0.9%). The applicability of the present method has been demonstrated for the determination of water-soluble aromatic acids in a common drug for external use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号