首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed an electrochemical thrombin aptasensor based on ZnO nanorods functionalized by electrostatically adsorption of 30‐mer DNA aptamers. The sensor surface was characterized by AFM and SEM. The surface layer assembling was optimized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with ferricyanide ions as redox markers. The peak current of the ferricyanide and the charge transfer resistance gradually decreased with increasing concentration of thrombin in the range from 3 pM to 100 nM due to formation of aptamer‐thrombin complexes and slower diffusion of the marker ions through the surface layer. At optimal conditions, a limit of detection (LOD) of 3 pM for EIS measurements and 10 pM for CV response was calculated from the S/N=3.  相似文献   

2.
Sulfamethoxazole (SMZ), an antibacterial sulfonamide drug, has been selectively determined using poly‐1,5‐diaminonaphthalene (p‐DAN) modified glassy carbon electrode (GCE). The modified sensor was characterized by field emission scanning electron microscopy (FE‐SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). SMZ showed linear response in the concentration range of 0.5–150 µM by using square wave voltammetry (SWV) and the detection limit was found to be 0.05 nM with sensitivity of 0.085 µA µM?1. The proposed sensor has been successfully employed to determine SMZ in the pharmaceutical tablets and human urine samples.  相似文献   

3.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

4.
The authors describe a surface plasmon resonance (SPR) based aptasensor for the carcinogenic mycotoxin aflatoxin B1 (AFB1) in a direct assay format. The aptamer is immobilized on the surface of a commercial sensor chip, and the SPR signal increases on binding of AFB1. The sensor chip can be fully regenerated by passing a flow of buffer over it upon which bound AFB1 dissociates from the aptamer. The biosensor works in the 0.4 nM to 200 nM AFB1 concentration range and has a 0.4 nM detection limit. It allows AFB1 to be determined in complex samples such as diluted red wine and beer. The assay is sensitive, and the chip is easily regenerated and stable. The method therefore overcomes certain limitations of antibody-based SPR assays and of competitive SPR assays for AFB1.
Graphical abstract Schematic presentation of the assay: Aptamer is coated on the chip of SPR, and the binding between aflatoxin B1 (AFB1) and the aptamer on chip causes SPR responses, allowing sensitive detection of AFB1.
  相似文献   

5.
The immobilization of acetylcholinesterase on platinum microelectrodes modified with p-nitrobenzenediazonium is optimized. In the first step, a layer of p-nitrophenyl groups was deposited on the surface and then reduced to p-aminophenyl groups. Finally, the enzyme was linked to the amino groups on the surface using glutaraldehyde. Each step of the electrode modification was characterized by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) at acidic and neutral pH to modify the electric charges of different bound moieties. The deposition of diazonium groups was attempted by potentiometry, amperometry or CV, but only potentiometry proceeded without passivation of the surface. The use of microelectrodes improved the limit of detection of ethylparaoxon measurements to 20 nM (compared to 100 nM in case of screen-printed electrodes based on the same method of immobilization). The method allowed the production of stable and reproducible amperometric microbiosensors and may be adapted to other enzymes and electrode materials.  相似文献   

6.
Copper-doped zinc oxide nanoparticles (NPs) CuxZn1−xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 μM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.  相似文献   

7.
A novel molecularly imprinted sensor was fabricated and used for the impedimetric detection of melamine. Considering the identity of polymeric film and the pK a of a melamine template, an effective procedure was established to construct the MIP-based melamine sensor. The proposed method is based on the electropolymerization of pyrrole (Py) in the presence of melamine on the electrochemically reduced graphene oxide modified glassy carbon electrode (ERGO/GCE), followed by treatment with the solution of 1% H2O2 in alkaline water/CH3CN-mixed solvents. The surface morphology and the electrical feature of molecularly imprinted polymer (MIP) were characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The EIS was also utilized to transduce the change of charge transfer resistance (R ct) at the interface of polymer film-electrolyte, after subsequent incubation of electrode in the solution containing different concentrations of analyte, and consequently, a linear response was obtained over the range of 4.0 to 240 nM with a detection limit of 0.83 nM (S/N = 3). The effect of possible interferences on the response of sensor was studied, and the results confirmed the good selectivity of the proposed device for melamine assay. The MIP sensor was successfully applied to determine melamine in a multiple concentration-spiked milk sample.  相似文献   

8.
《Electroanalysis》2017,29(2):481-488
An amperometric biosensor for ethyl carbamate (EC) was developed for the first time through the cascade reactions of urethanase and glutamate dehydrogenase (GLDH). Urethanase decomposes ethyl carbamate to produce ammonia, which converts to L‐glutamate under the catalysis of GLDH in the presence of α‐ketoglutarate and NADH. Then the change of NADH can be detected chronoamperometrically. The two enzymes were entrapped into chitosan/gelatine/γ‐glycidoxy propyl trimethoxy silane sol‐gel and immobilized on the surface of pyrolytic graphite electrode (PGE). The modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the amperometric EC biosensor exhibits a linear detection range from 0.5 to 40 μM with a low detection limit of 5.30 nM. The biosensor was successfully used to detect EC in mimic Chinese rice wine samples, and satisfactory recovery and relative standard deviation were achieved.  相似文献   

9.
In this work, ConA and CramoLL lectins were immobilized on gold nanoparticles (AuNp) with polyvinyl butyral (PVB), and adsorbed on the surface of gold (Au) electrodes. Electrochemical impedance spectroscopy (EIS), in the frequency range from 100mHz to 100KHz, and cyclic voltammetry (CV), from -0.2 to 0.7V, were performed on these electrodes, in phosphate buffer (PBS) solution containing 10mM K(3)[Fe(CN)(6)]/K(4)[Fe(CN)(6)] (1:1) mixture as a redox probe. EIS and CV measurements showed that redox probe reactions on the modified Au electrodes were partially blocked due to the adsorption of AuNp-ConA-PVB and AuNp-CramoLL-PVB. SEM images showed the presence of aggregates of AuNp-ConA on PVB spherules in a tridimensional structure on the surface of the Au electrode. Bovine serum albumin (BSA) was adsorbed on the AuNp-Lectin-PVB modified electrode in order to block the remaining free gold sites. Both EIS and CV techniques yielded results that confirm positive responses of the lectins to ovalbumin agglutination. These results indicate an improvement of the sensitivity for detection of sugars that can be applicable to construction of a biosensor sensitive to glycoproteins in solution.  相似文献   

10.
Nanoporous iron (hydr)oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (Icp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (θ) that shifts with increasing phosphate, and, at chosen frequencies, θ values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.  相似文献   

11.
《Electroanalysis》2017,29(9):2106-2113
In this article, electrochemical properties of CuO nanostructures based dopamine (DA) sensor was investigated. The morphology, structure, optical, and compositional properties of the CuO nanostructures were characterized by using SEM, XRD, UV‐Vis, and XPS techniques. The electrochemical properties were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results indicate that biosensors based on CuO nanostructures exhibit a high selectivity and sensitivity of 0.1975 μA μM–1 toward DA and effectively avoids the interference of ascorbic acid (AA) and uric acid (UA). The obtained EIS spectra for CuO sensors were analysed using an electrical equivalent circuit to understand the bulk and surface response via the capacitive and resistive parameters. The EIS measurement also leads to the direct determination of parameters like series resistance and ion diffusion phenomena at electrode‐electrolyte interface. The experimental CV and EIS results along with their analysis will have a significant impact on understanding the mechanism of high sensitivity and selectivity performance of CuO based sensors. This study may also lay the basis for efficient characterization of biosensors by coupling both the CV and EIS characterization techniques.  相似文献   

12.
A novel electrochemical DNA-based biosensor for the detection of deep DNA damage was designed employing the bionanocomposite layer of multiwalled carbon nanotubes (MWNT) in chitosan (CHIT) deposited on a screen printed carbon electrode (SPCE). The biocomponent represented by double-stranded (ds) herring sperm DNA was immobilized on this composite using layer-by-layer coverage to form a robust film. Individual and complex electrode modifiers are characterized by a differential pulse voltammetry (DPV) with the DNA redox marker [Co(phen)(3)](3+), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-) as a redox probe in a phosphate buffer solution (PBS). A good correlation between the CV and EIS parameters has been found, thus confirming a strong effect of MWNT on the enhancement of the electroconductivity of the electrode surface and that of CHIT on the MWNT distribution at the electrode surface. Differences between the CV and EIS signals of the electrodes without and with DNA are used to detect deep damage to DNA, advantageously using simple working procedures in the same experiment.  相似文献   

13.
The presence of profenofos (PFF) in food has been strictly limited by legislation due to its genotoxic and toxic effects on health. It is therefore very important to establish simple and rapid analytical methods to detect traces of this insecticide. A reusable molecularly imprinted polypyrrole MIP(O-PPy) on a glassy carbon electrode (GCE) has been developed to measure PFF. The PPy was polymerized by cyclic voltammetry (CV) in the presence of template molecules (PFF) in an acidic solution on a GCE. The various experimental parameters such as film thickness, analyte/monomer ratio, and removal/rebinding requirements were examined and optimized. The signal of the redox probe (ferrocyanide/ferrocyanide) was used for the electrochemical detections. All steps of the sensor manufacturing, removal/rebinding of template molecules, and response to different PFF concentrations were tested by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor was able to detect PFF in the linear ranges of 1.0×10−9 to 1.0×10−6 M and 1.0×10−9 to 5.0×10−6 M, with detection limits, a signal-to-noise ratio (S/N) of three was used to estimate LOD, of about 1 nM using DPV and EIS, respectively. The MIP (PPy) GCE provided excellent PFF recognition performance and was successfully used to quantify PFF in sweet pepper samples, yielding recoveries not greater than 108 %.  相似文献   

14.
《Electroanalysis》2017,29(8):1867-1875
A capacitive immunosensor for determination of sulphathaizole (STZ) has been developed on polymer coated indium tin oxide glass chip (ITO). The immunosensor chip was fabricated by polymerizing, ortho‐ phenylenediamine (o PD) on ITO followed by surface modification with anti‐sulphathiazole antibody. The developed immunosensor chip was characterized by using Atomic force microscopy (AFM), Cyclicvoltammetry (CV) and Electrochemical impedance spectroscopy (EIS). The capacitive measurement of the developed immunosensor was performed by using EIS in spiked drinking water and milk. The developed sensor showed liner detection range 0.1‐100 μgL−1for STZ with a limit of detection 0.01 μgL−1 in water with recovery between 95–106 %. The biosensor showed excellent selectivity and storage stability upto 4 weeks when preserved at 4 °C.  相似文献   

15.
《Analytical letters》2012,45(18):2809-2822
Development and use of highly ordered, vertically aligned TiO2 nanotube arrays modified with gold nanoparticles for the selective detection of ascorbic acid (AA) in the presence of uric acid and glucose are reported here. Gold nanoparticles were electrodeposited on the Nanotube arrays by CV. The sensor was characterized using SEM, EDS, CV, and EIS. It showed very good performance with a sensitivity of 46.8 μA mM?1 cm?2, response time below 2 seconds and linearity in the range of 1 μM to 5 mM with a detection limit of 0.1 μM and was tested for the AA concentration in pharmaceutical preparations.  相似文献   

16.
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control. Aptamers can specifically bind to targets with high affinity, showing advantages in affinity assays and biosensors. We reported an aptamer structure-switch for fluorescent detection of aflatoxin B1 (AFB1), using a label-free aptamer, a fluorescein (FAM)-labeled complementary strand (FDNA), and a quencher (BHQ1)-labeled complementary strand (QDNA). When AFB1 is absent, these three strands assemble into a duplex DNA structure through DNA hybridization, making FAM close to BHQ1, and fluorescence quenching occurs. In the presence of AFB1, the aptamer binds with AFB1, instead of hybridizing with QDNA. Thus, FAM is apart from BHQ1, and fluorescence increases with the addition of AFB1. This assay allowed detection of AFB1 with a detection limit of 61 pM AFB1 and a dynamic concentration range of 61 pM to 4 μM. This aptamer-based method enabled detection of AFB1 in complex sample matrix (e.g., beer and corn flour samples).  相似文献   

17.
A simple aptamer molecular beacon assay for rapid detection of aflatoxin B1 (AFB1) was achieved. AFB1-binding induced formation of a hairpin structure and closeness of fluorophore label and quencher probe, causing fluorescence decrease.  相似文献   

18.
郑艳洁  刘爱林  雷云  林新华 《电化学》2013,19(4):383-387
应用交流阻抗法和循环伏安法表征聚苏丹红Ⅲ/GC电极,并研究丹皮酚在该聚合物电极上的电化学行为. 实验表明,聚苏丹红Ⅲ/GC电极对丹皮酚具有良好的电催化作用,在3.0*10-7 ~ 2.2*10-5 mol·L-1浓度范围内,其差示脉冲伏安峰电流随浓度变化呈良好的线性关系,检测限为5.0*10-8 mol·L-1. 该法可用于实际样品中丹皮酚的测定,结果令人满意.  相似文献   

19.
In this work, we describe the preparation and characterization of a novel gold nanoparticles-polyaniline hybrid composite (AuNpPANI) with SH-terminal groups that, due to its ability of immobilizing dengue serotype-specific primers 1, 2 and 3 (ST1, ST2 and ST3), can be used for the development of biosensors. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were performed. CV and EIS results demonstrated that the AuNpPANI can immobilize ST1, ST2 and ST3, forming AuNpPANI-ST complexes. Well-defined cyclic voltammograms characteristic of a diffusion-limited redox process were observed both for the bare gold electrode and after these electrodes have been modified by the adsorption of AuNpPANI or AuNpPANI-ST. The AuNpPANI-ST(1-3) systems were able to recognize the dengue serotype of different patients at picomolar concentrations. Even when small volumes and low concentrations of the analyte were used, the CV and EIS results showed unequivocal evidence of an existing interaction between dengue serotype-specific primers and their complementary genomic DNA targets.  相似文献   

20.
J.P. Zheng  C.M. Pettit 《Talanta》2010,81(3):1045-19285
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号