首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar‐free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra‐pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R2 varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE‐C4D method was successfully applied for the determination of the studied polyols in commercial samples of sugar‐free chocolate.  相似文献   

2.
4‐Aminobutylic acid (GABA) is a monomer of plastic polyamide 4. Bio‐based polyamide 4 can be produced by using GABA obtained from biomass. The production of L ‐glutamic acid (Glu) from biomass has been established. GABA is produced by decarboxylation of Glu in biological process. High‐performance liquid chromatography (HPLC) with derivatization is generally used to determine the concentration of GABA and Glu in reacted solution samples for the efficient production of GABA. In this study, we have investigated the rapid determination of GABA and Glu by capillary electrophoresis‐mass spectrometry (CE‐MS) without derivatization. The determination was achieved with the use of a shortened capillary, a new internal standard for GABA, and optimization of sheath liquid composition. Determined concentrations of GABA and Glu by CE‐MS were compared with those by pre‐column derivatization HPLC with phenylisothiocyanate. The determined values by CE‐MS were close to those by HPLC with pre‐column derivatization. These results suggest that the determination of GABA and Glu in reacted solution is rapid and simplified by the use of CE‐MS.  相似文献   

3.
This paper presents a method for fast and simultaneous determination of diclofenac (DCF) and its common counter‐ions (potassium, sodium, and diethylammonium) using CE with capacitively coupled contactless conductivity detection (CE‐C4D). On the basis of a single electropherogram (about 50 s), the proposed method allows the determination of the stoichiometry, absolute quantification and evaluation of the degradation degree of the active pharmaceutical ingredient (DCF). A linear working range from 100 to 500 μmol/L was obtained for all analytes in an equimolar TRIS/TAPS (10 mmol/L) solution as the background electrolyte as well as adequate LOD (7, 6, 7, and 10 μmol/L for K+, Na+, diethylammonium, and DCF, respectively). The proposed method was applied to the analysis of pharmaceutical formulations (tablets and spray form) with similar results to those achieved by HPLC (DCF) or flame photometry (K and Na) at a 95% confidence level.  相似文献   

4.
Wei R  Li W  Yang L  Jiang Y  Xie T 《Talanta》2011,83(5):334-1490
A sensitive method of online preconcentration followed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) is evaluated as a novel approach for the determination of benzoic acid and sorbic acid in soy sauce. The online preconcentration technique, namely field-enhanced sample injection, coupled with CE-C4D were successfully developed and optimized. In order to reduce the complex matrix interference resulting from the constituents of soy sauce, a suitable sample clean-up procedure was also investigated for real sample pretreatment. Under optimized conditions, sorbic acid and benzoic acid were well separated within 10 min, and the detection limits were 0.05 μM (5.6 μg L−1) and 0.08 μM (9.8 μg L−1), respectively. The accuracy was tested by spiking 10.0 mg L−1 and 100.0 mg L−1 of standards in the soy sauce samples, and the recoveries were 95-99%, respectively. Results of this study show a great potential for the proposed method as a tool for the fast screening of benzoic acid and sorbic acid in a complex matrix.  相似文献   

5.
Interface‐free two‐dimensional heart‐cutting capillary electrophoresis for two different classes of analytes (anionic and neutral) in a single capillary is presented. Simultaneous sample stacking and orthogonal separation were demonstrated. The anionic species were first analyzed by capillary zone electrophoresis in the first dimension. Then, the neutral compounds were separated in the second dimension by micellar electrokinetic chromatography using the common anionic surfactant sodium dodecyl sulfate. The first and second dimensions occurred automatically without changing the electrolyte and without polarity switching. Artificial mixtures (five anions and four neutral compounds) were successfully analyzed with sensitivity enhancement factors from 7 to 28. The orthogonal separation was complete within 8 min. Some analytical features and application to a spiked real river water sample were also studied.  相似文献   

6.
Based on an efficient sample clean‐up and field‐amplified sample injection online preconcentration technique in capillary electrophoresis with contactless conductivity detection, a new analytical method for the sensitive determination of melamine in milk samples was established. In order to remove the complex matrix interference, which resulted in a serious problem during field‐amplified sample injection, liquid–liquid extraction was utilized. As a result, liquid–liquid extraction provides excellent sample clean‐up efficiency when ethyl acetate was used as organic extraction by adjusting the pH of the sample solution to 9.5. Both inorganic salts and biological macromolecules are effectively removed by liquid–liquid extraction. The sample clean‐up procedure, capillary electrophoresis separation parameters and field‐amplified sample injection conditions are discussed in detail. The capillary electrophoresis separation was achieved within 5 min under the following conditions: an uncoated fused‐silica capillary, 12 mM HAc + 10 mM NaAc (pH = 4.6) as running buffer, separation voltage of +13 kV, electrokinetic injection of +12 kV × 10 s. Preliminary validation of the method performance with spiked melamine provided recoveries >90%, with limits of detection and quantification of 0.015 and 0.050 mg/kg, respectively. The relative standard deviations of intra‐ and inter‐day were below 6%. This newly developed method is sensitive and cost effective, therefore, suitable for screening of melamine contamination in milk products.  相似文献   

7.
The aim of the current study was to optimise and validate the methodology for determination of γ‐hydroxybutyric acid (GHB) in saliva by CE combined with a contactless conductivity detector (C4D) and indirect UV absorbance detection (λABS = 210 nm). The optimized BGE, consisting of 8.5 mM maleic acid, 17 mM arginine, 255 μM cetyltrimethylammonium bromide (CTAB), and 15% acetonitrile, was evaluated for the separation of GHB in saliva within 6 min. The performance characteristics of the CE‐C4D‐indirect UV methodology was validated. The instrument detection and quantification limits were 0.49 and 1.6 mg/L for C4D, and 5.1 mg/L and 17.0 mg/L for indirect UV, respectively. The linearity was obtained over the range from 2.5 to 400 mg/L for C4D and from 12.5 to 400 mg/L for indirect UV. The interday precisions were within 2.3–5.7% and intraday precisions were within 1.6–9.0% for C4D as well as 2.1–9.3%, 5.6–10.1% for indirect UV in spiked saliva, respectively. The recoveries were within 87.2–104.4%. The matrix effects were +53.2% for small concentrations up to 25 mg/L for C4D and +23.6% for concentrations up to 75 for mg/L for indirect UV detection. No matrix effects were observed for higher concentration levels. In conclusion, CE‐C4D‐indirect UV can offer a rapid, accurate, sensitive, and definitive method for the determination of GHB abuse in saliva samples as a forensic screening tool.  相似文献   

8.
To help to clarify therapeutic functions of lipoic acid (LA) in biochemical and clinical practice we have elaborated a fast, simple and accurate HPLC method enabling determination of LA in human urine. The proposed analytical approach includes reduction of LA with tris(2‐carboxyethyl)phosphine and simultaneous separation and derivatization of the analyte with butylamine and o‐phthaldialdehyde followed by spectrofluorimetric detection at λex = 340 nm and λem = 440 nm. The assay was performed using gradient elution and the mobile phase containing 0.0025 mol L?1 o‐phthaldialdehyde in 0.0025 mol L?1 NaOH and acetonitrile. Linearity of the detector response for LA was observed in the range of 0.3–8 μmol L?1. Limits of detection and quantification for LA in urine samples were 0.02 and 0.03 μmol L?1, respectively. The total analysis time, including sample work‐up, was <20 min. The analytical procedure was successfully applied to analysis of real urine samples delivered from six healthy volunteers who received a single 100 mg dose of LA.  相似文献   

9.
Phthalimide can be formed from either the degradation of folpet and phosmet, or reaction of phthalic anhydride with primary amino groups. Consequently, the sum of phthalimide and folpet, expressed as folpet‐residue definition, is highly prone to false‐positive levels of folpet in tea. An analytical method is thus urgently needed to investigate the residue level and source of phthalimide in tea. In this work, we developed an accurate method of determining phthalimide and phthalic acid (the indicator of phthalic anhydride) by acetonitrile extraction and 3‐bromopropyltrimethylammonium bromide derivatization coupled with ultra high performance liquid chromatography and high‐resolution mass spectrometry. The method was validated, and linearity (correlation coefficients > 0.99) was obtained. Satisfactory recoveries at 10, 20, 50, and 100 μg/kg ranged from 76 to 117%, and the intra‐ and interday accuracies were <23%. The limit of quantification for phthalimide and phthalic acid was 10 μg/kg. The developed method was further successfully used to determine phthalimide and phthalic acid in some tea samples. The positive rate of phthalimide and phthalic acid detected in the tea samples ranged from 30–75 and 50–90%, respectively.  相似文献   

10.
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed‐species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR‐based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one‐tube assay is simple, low‐cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.  相似文献   

11.
We report a new fast method for the simultaneous determination of amoxicillin, clavulanate, and potassium by capillary electrophoresis with capacitively coupled contactless conductivity detection. Samples containing potassium as the cation, and both amoxicillin and clavulanate as anions were determined simultaneously in a single run (in less than 45 s) using 10 mmol/L of both 2‐amino‐2‐hydroxymethyl‐propane‐1,3‐diol and 3‐{[2‐hydroxy‐1,1‐bis(hydroxymethyl)ethyl]amino}‐1‐propanesulfonic acid (pH 8.4) as the background electrolyte. Limits of detection were 25.0, 5.0, and 4.0 μmol/L for amoxicillin, clavulanate, and potassium, respectively. The proposed method is inexpensive, simple, fast (75 injections h−1), environment friendly (minimal waste generation), and accurate (recovery values between 98 and 103%). The results obtained with the proposed method were statistically similar (95% confidence level) to those obtained by using high‐performance liquid chromatography (amoxicillin and clavulanate) and flame photometry (potassium).  相似文献   

12.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

13.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

14.
In this work, a new method employing capillary electrophoresis (CE) for the determination of several species in biodiesel is introduced. The concentrations of inorganic species (Na+, K+, Ca2+, Mg2+, SO42−, and PO43−) and glycerol are of interest to the regulatory authorities due to their ability to form undesirable compounds in engines. Additionally, other species of low molecular weight (e.g., acetate, formate, and propionate) are of interest because they contribute towards increasing the acidity. These species are formed by the degradation of biodiesel and cause damage to engines and the environment. The cation separation was performed in background electrolyte (BGE) composed of 30 mmol L−1 of 2-(n-morpholino)ethanesulfonic acid (MES)/L-histidine (His), pH 6. The separation of anionic species was carried out in similar BGE with 0.2 mmol L−1 cetyltrimethylammonium bromide (CTAB) added. For glycerol, a neutral species, its oxidation with periodate was employed. This well-known reaction is specific to polyols and generates iodate. The amount of iodate produced by the reaction was determined by CE. The separation was carried out in approximately 1 min using BGE composed of 30 mmol L−1 acetic acid, pH 3. The analytical parameters evaluated were: linearity (r > 0.99), the RSD values for area and migration time were < 3.4% and 0.9%, respectively, and recovery was in the range of 89 to 107%.  相似文献   

15.
Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l‐ arginine to l‐ citrulline. l‐ Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l‐ arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l‐ arginine, l‐ citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6‐pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse‐phase column. Serum aliquots (100 μL) were spiked with isotope‐labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2 = 0.9966–0.9986) for all derivatized compounds. Good accuracy (94.67–99.91%) and precision (1.92–11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l‐ arginine and l‐ citrulline in angiologic patients. This robust and fast LC‐ESI‐MS method may be a useful tool in quantitative analysis of l‐ arginine, ADMA, SDMA and l‐ citrulline.  相似文献   

16.
《Electroanalysis》2006,18(22):2168-2173
A new compact holder for either 5‐ or 10‐MHz AT‐cut quartz crystal resonator of an electrochemical quartz crystal microbalance was designed, fabricated and characterized. The holder is a hydrodynamically controlled thin‐layer radial‐flow microelectrochemical cell. Its unique feature consists of (i) a micrometer‐screw adjustable distance between the movable coaxial assembly of the Ag/Ag+ pseudoreference electrode and the inlet capillary nozzle with respect to the metal‐film working electrode of the quartz crystal resonator, and (ii) a U‐clamp mountable resonator, easily accessible for change without using any tools. The inlet solution stream is centered axially against the working electrode. The holder performance was tested under different flow conditions. These include hydrodynamic voltammetry measurements on the Fe(CN) /Fe(CN) couple, i.e., a redox system with no mass transfer across the solution–electrode interface, as well as simultaneous chronoamperometry and chronoelectrogravimetry measurements under flow injection analysis (FIA) conditions on the Ag/Ag+ couple, i.e., a system with electrodeposition of a rigid metallic film. Moreover, simultaneous changes of resonant frequency and dynamic resistance were measured under FIA conditions for a glycerol solution, i.e., an electroinactive viscous medium. For the 30<Fm<180 μL min?1 volume flow rate of solution and 50<d<250 μm nozzle‐to‐resonator distance, the holder operates in a thin‐layer radial‐flow regime at a fully developed laminar flow. For Fm=30 μL min?1 and d=100 μm, both mass and charge conversion accompanying silver electrodeposition is appreciably high and close to 35%. Simultaneous measurements of the resonant frequency change and current‐potential or current‐time transients allowed investigations of electrochemical processes involving mass changes of rigid deposits while those of the frequency change and dynamic resistance change involve changes of viscoelastic properties of medium.  相似文献   

17.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

18.
The kinetics and mechanisms of the oxidative degradation of 2,4‐dihydroxybenzoic acid (2,4‐DHBA) by the Fenton and photo‐Fenton processes were investigated in detail by a combination of HPLC, IC, and TOC analyses. The formation of 2,3,4‐trihydroxybenzoic acid (2,3,4‐THBA) at an early oxidation stage shows that hydroxylation of the aromatic ring is the first step of the process. This intermediate was able to reduce FeIII and to contribute to the recycling of FeII. Complete mineralization could only be achieved under irradiation (photo‐Fenton). A detailed study of the dependence of the rate of mineralization on the concentration of H2O2 and dissolved O2 was carried out. It was found that, even at a low initial concentration of H2O2, mineralization by the photo‐Fenton process was complete in a relatively short time, provided that the O2 concentration was high enough, indicating that O2 may, at least in part, substitute H2O2. Channeling reaction pathways toward O2 rather than H2O2 consumption is of particular interest for the technical development of the photo‐Fenton process.  相似文献   

19.
Pulsatilla chinensis saponins, the major active components in the herb, have drawn great attention as potential hepatitis B virus infection and hepatoma treatments. Here, a sensitive and accurate HPLC–MS/MS method was established for simultaneous determination of three saponins – anemoside B4, anemoside A3 and 23‐hydroxybetulinic acid – in rat plasma and liver, and fully validated. The method was successfully applied to a pharmacokinetics and liver distribution study of P. chinensis saponins. Consequently, 23‐hydroxybetulinic acid, with an extremely low content in the P. chinensis saponins, exhibited the highest exposure in the liver and in sites before and after hepatic disposition, namely, in the portal vein plasma and systemic plasma, followed by anemoside B4, which showed the highest content in the herb, whereas anemoside A3 displayed quite limited exposure. The hepatic first‐pass effects were 71% for 23‐hydroxybetulinic acid, 27% for anemoside B4 and 37% for anemoside A3, corresponding to their different extents of liver distribution. To our knowledge, this is the first investigation on the liver first‐pass effect and distribution of P. chinensis saponins to date. These results also provide valuable information for the understanding of the pharmacological effect of P. chinensis saponins on liver diseases.  相似文献   

20.
A fast, green, sensitive, and accurate analytical method using high‐performance liquid chromatography couple with fluorescence detection was established and validated for the simultaneous determination of amlodipine besylate and celecoxib in their recently approved fixed‐dose combination tablets (1:20). Separation of the two drugs was achieved on C18 reversed‐phase column (Thermo ODS Hypersil, 4.6 × 250 mm, particle size 5 µm) using acetonitrile:potassium phosphate buffer (50 mM; pH 5.5, 60:40 v/v) as a mobile phase at 40°C, which eluted at a rate of 1 mL/min. Detection was carried out with excitation and emission wavelengths of 360 and 446 nm for amlodipine and 265 and 359 nm for celecoxib, respectively. The method was linear over a concentration range of 0.05‐2 and 0.05‐10 µg/mL and limit of detection reached to 0.017 and 0.0167 µg/mL for amlodipine and celecoxib, respectively. The developed method was successfully applied to assess the cited drugs in their newly FDA approved fixed‐dose combination tablet dosage form. Furthermore, the method was found to be sensitive and eco‐friendly green alternative to the reported methods as it was evaluated according to the green analytical procedure index tool guidelines and analytical Eco‐Scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号