共查询到20条相似文献,搜索用时 0 毫秒
1.
Alexander Vladimirovich Ivanov Edward Danielevich Virus Ksenya Alexandrovna Nikiforova Nicolai Evgenevich Kushlinskii Boris Petrovich Luzyanin Marina Yurievna Maksimova Mikhail Aleksanrovich Piradov Aslan Amirkhanovich Kubatiev 《Electrophoresis》2016,37(20):2663-2669
An approach that allows direct analysis of the ratio of S‐adenosylmethionine (SAM) and S‐adenosylhomocysteine (SAH) by using CE is presented. The analytes were extracted on phenylboronic acid phase and eluted with 100 mmol/L HCl. CE separation of the analytes took place in the transient isotachophoresis mode with addition of NaCl and meglumine to the samples. The sensitivity (S/N = 3) and quantification limit (S/N = 10) of the method were 0.07 and 0.2 μmol/L, respectively, using a silica capillary with 50 μm internal diameter and 30.5 cm total length. The BGE was 0.02 mol/L Tris with 1 mol/L HCOOH (pH 2.2), and the separation voltage was 15–17 kV. Accuracy of SAM and SAH analysis in urine was 96 and 105%, respectively; interday precision for the SAM/SAH ratio was within 6%. The theoretical plate number exceeded a million. Total analysis time was 8.5 min. 相似文献
2.
Simultaneous analysis of catechol‐O‐methyl transferase activity,S‐adenosylhomocysteine and adenosine
Novel HPLC method utilizing UV‐detection was developed to analyse catechol‐O‐methyltransferase (COMT) products, vanillic acid and isovanillic acid, S‐adenosylhomocysteine (SAH) and adenosine formed from dihydroxybenzoic acid and S‐adenosyl‐L‐methionine (SAM) by incubation of the rat tissues. Entacapone, a COMT inhibitor, prevented the formation of SAH only partially in the striatal homogenate whereas in the kidney homogenate the increase of SAH was prevented by entacapone. In conclusion, this method was reliable, rapid and simple. COMT seemed to be partially responsible on the SAM utilizing methylations in the striatal homogenates while in the high COMT activity tissue, COMT was the main SAH producing methyltransferase. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
Chunling Wang Xiaoke Yang Endong Wang Baiqing Li 《International journal of quantum chemistry》2013,113(9):1409-1415
Ribosome methylation is important for life processes and is mainly catalyzed by radical S‐Adenosylmethionine (SAM) enzymes. Two SAM molecules serve as the cofactor by providing the 5 ′‐deoxyadenosyl radical for substrate activation and the methyl. Recently, Booker and coworkers (Science 2011, 332, 604) proposed an alternative mechanism for a pair of radical SAM enzymes, RlmN and Cfr, which respectively methylate the C2 and C8 of adenosine 2503. Their deuterium labeling experiments reveal that methyl group does not transfer directly from SAM to adenosine, instead it passes to Cys355 first, then onto adenosine. In this article, this new reaction mechanism is studied using density functional theory with B3LYP hybrid functional. The reaction system is simulated using small model compounds in the gas phase, and the protein environment is approximated using polarizable continuum model. The structures of the transition states and the intermediates are identified, and their free energies are calculated. The activation barriers indicate that the proposed reaction mechanism is plausible. The formation of a disulfide bond is found to be the rate‐limiting step. © 2012 Wiley Periodicals, Inc. 相似文献
4.
Facile Chemoenzymatic Strategies for the Synthesis and Utilization of S‐Adenosyl‐L‐Methionine Analogues 下载免费PDF全文
Dr. Shanteri Singh Dr. Jianjun Zhang Tyler D. Huber Manjula Sunkara Katherine Hurley Dr. Randal D. Goff Dr. Guojun Wang Wen Zhang Prof. Chunming Liu Prof. Jürgen Rohr Prof. Steven G. Van Lanen Prof. Andrew J. Morris Prof. Jon S. Thorson 《Angewandte Chemie (International ed. in English)》2014,53(15):3965-3969
A chemoenzymatic platform for the synthesis of S‐adenosyl‐L ‐methionine (SAM) analogues compatible with downstream SAM‐utilizing enzymes is reported. Forty‐four non‐native S/Se‐alkylated Met analogues were synthesized and applied to probing the substrate specificity of five diverse methionine adenosyltransferases (MATs). Human MAT II was among the most permissive of the MATs analyzed and enabled the chemoenzymatic synthesis of 29 non‐native SAM analogues. As a proof of concept for the feasibility of natural product “alkylrandomization”, a small set of differentially‐alkylated indolocarbazole analogues was generated by using a coupled hMAT2–RebM system (RebM is the sugar C4′‐O‐methyltransferase that is involved in rebeccamycin biosynthesis). The ability to couple SAM synthesis and utilization in a single vessel circumvents issues associated with the rapid decomposition of SAM analogues and thereby opens the door for the further interrogation of a wide range of SAM utilizing enzymes. 相似文献
5.
Substrate‐Tuned Catalysis of the Radical S‐Adenosyl‐L‐Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis 下载免费PDF全文
Xinjian Ji Dr. Yongzhen Li Prof. Dr. Wei Ding Prof. Dr. Qi Zhang 《Angewandte Chemie (International ed. in English)》2015,54(31):9021-9024
NosL is a radical S‐adenosyl‐L ‐methionine (SAM) enzyme that converts L ‐Trp to 3‐methyl‐2‐indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2‐amino‐3‐(benzofuran‐3‐yl)propanoic acid (ABPA), we clearly demonstrated that the 5′‐deoxyadenosyl (dAdo) radical‐mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L ‐Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical‐mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities. 相似文献
6.
Yeonjin Ko Mark W. Ruszczycky Sei‐Hyun Choi Prof. Dr. Hung‐wen Liu 《Angewandte Chemie (International ed. in English)》2015,54(3):860-863
DesII is a radical S‐adenosylmethionine (SAM) enzyme that catalyzes the C4‐deamination of TDP‐4‐amino‐4,6‐dideoxyglucose through a C3 radical intermediate. However, if the C4 amino group is replaced with a hydroxy group (to give TDP‐quinovose), the hydroxy group at C3 is oxidized to a ketone with no C4‐dehydration. It is hypothesized that hyperconjugation between the C4 C? N/O bond and the partially filled p orbital at C3 of the radical intermediate modulates the degree to which elimination competes with dehydrogenation. To investigate this hypothesis, the reaction of DesII with the C4‐epimer of TDP‐quinovose (TDP‐fucose) was examined. The reaction primarily results in the formation of TDP‐6‐deoxygulose and likely regeneration of TDP‐fucose. The remainder of the substrate radical partitions roughly equally between C3‐dehydrogenation and C4‐dehydration. Thus, changing the stereochemistry at C4 permits a more balanced competition between elimination and dehydrogenation. 相似文献
7.
In‐capillary detection of fast antibody‐peptide binding using fluorescence coupled capillary electrophoresis 下载免费PDF全文
Haifang Qin Shumin Ding Li Liu Yiwan Teng Yao Chen Cheli Wang Jinchen Li Jianhao Wang Pengju Jiang 《Electrophoresis》2016,37(2):233-238
Herein, we report a technique for detecting the fast binding of antibody‐peptide inside a capillary. Anti‐HA was mixed and interacted with FAM‐labeled HA tag (FAM‐E4) inside the capillary. Fluorescence coupled capillary electrophoresis (CE‐FL) was employed to measure and record the binding process. The efficiency of the antibody‐peptide binding on in‐capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti‐HA‐FAM‐E4 complex was investigated as well. The results indicated that E4YPYDVPDYA (E4) or TAMRA‐E4YPYDVPDYA (TAMRA‐E4) had the same binding priorities with anti‐HA. The addition of excess E4 or TAMRA‐E4 could lead to partial dissociation of the complex and take a two‐step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions. 相似文献
8.
In‐capillary self‐assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis 下载免费PDF全文
Jianhao Wang Jingyan Li Jinchen Li Yuqin Qin Cheli Wang Pengju Jiang 《Electrophoresis》2015,36(14):1523-1528
As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self‐assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self‐assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self‐assembly kinetics of QDs and protein using the Hill equation, the KD value for the self‐assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of‐capillary method and confirmed the effectiveness of the present method. 相似文献
9.
Andrew W. Lantz Bledar Bisha Man‐Yung Tong Ryan E. Nelson Byron F. Brehm‐Stecher Daniel W. Armstrong 《Electrophoresis》2010,31(16):2849-2853
A CE method based on whole‐cell molecular labeling via fluorescence in situ hybridization was developed for the detection of Candida albicans in whole blood. Removal of potentially interfering red blood cells (RBC) with a simple hypotonic/detergent lysis step enabled us to detect and quantitate contaminating C. albicans cells at concentrations that were orders of magnitude lower than background RBC counts (∼7.0×109 RBC/mL). In the presence of the lysed blood matrix, yeast cells aggregated without the use of a blocking plug to stack the cells. Short (15 min) hybridizations yielded bright Candida‐specific fluorescence in situ hybridization signals, enabling us to detect as few as a single injected cell. The peak area response of the stacked Candida cells showed a strong linear correlation with cell concentrations determined by plate counts, up to ∼107 CFU/mL (or ∼1×104 injected cells). This rapid and quantitative method for detecting Candida in blood may have advantageous applications in both human and veterinary diagnostics. 相似文献
10.
Dr. Dehui Zhang Igor Macinkovic Dr. Nelmi O. Devarie‐Baez Dr. Jia Pan Dr. Chung‐Min Park Prof. Kate S. Carroll Dr. Milos R. Filipovic Prof. Ming Xian 《Angewandte Chemie (International ed. in English)》2014,53(2):575-581
Protein S‐sulfhydration (forming ‐S‐SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2S‐mediated signaling pathways. In this study we report the first selective, “tag‐switch” method which can directly label protein S‐sulfhydrated residues by forming stable thioether conjugates. Furthermore we demonstrate that H2S alone cannot lead to S‐sulfhydration and that the two possible physiological mechanisms include reaction with protein sulfenic acids (P‐SOH) or the involvement of metal centers which would facilitate the oxidation of H2S to HS.. 相似文献
11.
Fast analysis of phenolic acids by electrokinetic supercharging‐nonaqueous capillary electrophoresis
A method was developed to analyze phenolic acids by nonaqueous CE after online concentration with electrokinetic supercharging. The EOF was reversed using a polyelectrolyte multilayer approach based on the successive adsorption of poly(diallyldimethylamonium chloride) and poly(styrenesulfonate) to reduce the analysis time. The results showed that the coatings were stable during 40 consecutive injections. Four phenolic acids were separated within 8 min using 30 mM ammonium acetate (pH* 8.0). The electrokinetic injection time and terminator length of the electrokinetic supercharging method were optimized to improve the detection sensitivity. Under the optimized conditions (electrokinetic injection of 100 s, ?10 kV; terminator of 20 mM 2‐(cyclohexylamino) ethanesulfonic acid, 22 s, 0.5 psi), the sensitivity was enhanced from 300‐ to 440‐fold. The detection limits, based on three times noise, were in the range 1.0–2.5 ng/mL. 相似文献
12.
James V. Crivello Jinseo Ahn 《Journal of polymer science. Part A, Polymer chemistry》2003,41(16):2556-2569
A new, simplified method has been developed for the synthesis of S,S‐dialkyl‐S‐(dimethylhydroxyphenyl)sulfonium salt cationic photoinitiators. This novel method has successfully been used for the preparation of S,S‐dialkyl‐S‐(3,5‐dimethyl‐4‐hydroxyphenyl)sulfonium and S,S‐dialkyl‐S‐(3,5‐dimethyl‐2‐hydroxyphenyl)sulfonium salts showing a wide variation in the length and structure of the alkyl chains on the positively charged sulfur atom. These photoinitiators can also be prepared with a wide variety of different anions. The manipulation of the lengths of the alkyl chains permits the design of compatible photoinitiators for highly nonpolar monomers and oligomers such as epoxy‐functional silicones, epoxidized polybutadiene, and epoxidized vegetable oils. This article describes the synthesis and characterization of these photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2556–2569, 2003 相似文献
13.
Single drop microextraction (SDME) is a convenient and powerful preconcentration method for CE before injection. By simple combination of sample‐handling sequences without modification of the CE apparatus, a drop of an aqueous acceptor phase covered with a thin organic layer was formed at the tip of a capillary; 10 min SDME of fluorescein and 6‐carboxyfluorescein from a donor phase of pH 1 to an acceptor phase of pH 9 provided 110‐fold enrichments without stirring the donor phase. To improve the concentration effect further, SDME was coupled with an on‐line (after injection) sample preconcentration method, sweeping, in which analytes in a long sample zone are accumulated at the boundary of a pseudostationary phase penetrating into the sample zone. It is thus necessary to inject a sample of much larger volume than that of a drop in typical SDME. A Teflon sleeve over the capillary inlet allowed a large volume drop to be held stably during extraction. By in‐line coupling 10 min SDME and sweeping of a 30 nL sample using a cationic surfactant dodecyltrimethylammonium, enrichment factors of the double preconcentration were increased up to 32 000. 相似文献
14.
The popularity of ionic liquids (ILs) has grown during the last decade in enhancing the sensitivity of CE through different off‐line or on‐line sample preconcentration techniques. Water‐insoluble ILs were commonly used in IL‐based liquid phase microextraction, in all its variants, as off‐line sample preconcentration techniques combined with CE. Water‐soluble ILs were rarely used in IL‐based aqueous two phase system (IL‐ATPS) as an off‐line sample preconcentration approach combined with CE in spite of IL‐ATPS predicted features such as more compatibility with CE sample injection due to its relatively low viscosity and more compatibility with CE running buffers avoid, in some cases, anion exchange precipitation. Therefore, the attentions for the key parameters affecting the performance of IL‐ATPSs were generally presented and discussed. On‐line CE preconcentration techniques containing IL‐based surfactants at nonmicellar or micellar concentrations have become another interesting area to improve CE sensitivity and it is likely to remain a focus of the field in the endeavor because of their numerous to create rapid, simple and sensitive systems. In this article, significant contributions of ILs in enhancing the sensitivity of CE are described, and a specific overview of the relevant examples of their applications is also given. 相似文献
15.
《Journal of separation science》2003,26(8):709-714
Capillary electrophoresis with indirect UV detection was applied to the analysis of a mixture of 3‐quinuclidinol and its four quaternary derivatives (N‐methyl, N‐ethyl, N‐propyl, and N‐isopropyl derivative). 10 mM imidazole acetate buffer, pH = 4.0 offers suitable detection sensitivity (LOD = 1 μmol L–1) and permits separation of the mixture except for the pair 3‐quinuclidinol–N‐methyl derivative. The separation of all analytes was achieved on addition of 15 mmol L–1 β‐cyclodextrin or 25% (w/w) polyethylene glycol 2000 to the background electrolyte. The optimized method was employed for the analysis of pond water spiked with these analytes. Actual ionic mobilities of the studied compounds were measured using mobility standards (potassium, sodium, tetramethyl‐ and tetrabutylammonium). The migration index was derived as another identification parameter based on migration data and the precision of the obtained values is discussed in brief. 相似文献
16.
James V. Crivello Jinseo Ahn 《Journal of polymer science. Part A, Polymer chemistry》2003,41(16):2570-2587
A study of the photoinitiated and thermally initiated cationic polymerizations of several monomer systems with S,S‐dialkyl‐S‐(3,5‐dimethylhydroxyphenyl)sulfonium salt (HPS) photoinitiators bearing different lengths of alkyl chains on the positively charged sulfur atom has been conducted. HPS photoinitiators are capable of photoinitiating the cationic polymerization of a wide variety of epoxy and vinyl ether monomers directly on irradiation with short‐wavelength UV light. Aryl ketone photosensitizers are effective in extending the spectral response of these photoinitiators into the long‐wavelength UV region. Kinetic studies with real‐time infrared spectroscopy show that HPS photoinitiators exhibit good efficiency in the polymerization of epoxide and vinyl ether monomers. Comparative studies also demonstrate that S,S‐dimethyl‐S‐(3,5‐dimethyl‐2‐hydroxyphenyl)sulfonium salts are more active photoinitiators than their isomeric S,S‐dimethyl‐S‐(3,5‐dimethyl‐4‐hydroxyphenyl)sulfonium salt counterparts. Both types of HPS photoinitiators display reversible photolysis as a result of facile termination reactions that take place between the growing chains ends with the photogenerated sulfur ylides. Preliminary studies have shown that HPS photoinitiators can also be employed as thermal initiators for the cationic ring‐opening polymerization of epoxides at moderate temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2570–2587, 2003 相似文献
17.
A lamp‐based fluorescence detection (Flu) system for CE was extended with a wavelength‐resolved (WR) detector to allow recording of full protein emission spectra. WRFlu was achieved using a fluorescence cell that employs optical fibres to lead excitation light from a Xe‐Hg lamp to the capillary window and protein fluorescence emission to a spectrograph equipped with a CCD. A 280 nm band pass filter etc. together with a 300 nm short pass cut‐off filter was used for excitation. A capillary cartridge was modified to hold the detection cell in a commercial CE instrument enabling WRFlu in routine CE. The performance of the WRFlu detection was evaluated and optimised using lysozyme as model protein. Based on reference spectral data, a signal‐intensity adjustment was introduced to correct for transmission losses in the detector optics that occurred for lower protein emission wavelengths. CE‐WRFlu of lysozyme was performed using BGEs of 50 mM sodium phosphate (pH 6.5 or 3.0) and a charged‐polymer coated capillary. Using the 3‐D data set, signal averaging over time and emission‐wavelength intervals was carried out to improve the S/N of emission spectra and electropherograms. The detection limit for lysozyme was 21 nM, providing sufficient sensitivity to obtain spectral information on protein impurities. 相似文献
18.
Daniel Alfonso Spudeit Marcel Piovezan Maressa D. Dolzan Jacqueline Pereira Vistuba Mônia Stremel Azevedo Luciano Vitali Marcone Augusto Leal Oliveira Ana Carolina Oliveira Costa Gustavo Amadeu Micke 《Electrophoresis》2013,34(24):3333-3340
A rapid method for the simultaneous determination of free glycerol (FG) and total glycerol (TG) in biodiesel by CE using a short‐end multiple injection (SE/MI) configuration system is described. The sample preparation for FG involves the extraction of glycerol with water and for TG a saponification reaction is carried out followed by extraction as in the case of FG. The glycerol extracted in both cases is submitted to periodate oxidation and the iodate ions formed are measured on a CE‐SE/MI system. The relevance of this study lies in the fact that no analytical procedure has been previously reported for the determination of TG (or of FG and TG simultaneously) by CE. The optimum conditions for the saponification/extraction process were 1.25% KOH and 25°C, with a time of only 5 min, and biodiesel mass in the range of 50.0–200.0 mg can be used. Multiple injections were performed hydrodynamically with negative pressure as follows: 50 mbar/3s (FG sample); 50 mbar/6s (electrolyte spacer); 50 mbar/3s (TG sample). The linear range obtained was 1.55–46.5 mg/L with R2> 0.99. The LOD and LOQ were 0.16 mg/L and 0.47 mg/L, respectively for TG. The method provides acceptable throughput for application in quality control and monitoring biodiesel synthesis process. In addition, it offers simple sample preparation (saponification process), it can be applied to a variety biodiesel samples (soybean, castor, and waste cooking oils) and it can be used for the determination of two key parameters related to the biodiesel quality with a fast separation (less than 30 s) using an optimized CE‐SE/MI system. 相似文献
19.
Dirk Wesenberg Corinna Bleuel Gerd‐Joachim Krauss Martin G. Schmid Michael Weiss Gerald Gübitz 《Biomedical chromatography : BMC》2010,24(10):1125-1129
The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5‐dimethylphenylcarbamate)‐coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid–liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
Laiel C. Soliman Kingsley K. Donkor John S. Church Bruno Cinel Dipesh Prema Michael E. R. Dugan 《Journal of separation science》2013,36(20):3440-3448
A lower dietary omega‐6/omega‐3 (n‐6/n‐3) fatty acid ratio (<4) has been shown to be beneficial in preventing a number of chronic illnesses. Interest exists in developing more rapid and sensitive analytical methods for profiling fatty acid levels in foods. An aqueous CE method was developed for the simultaneous determination of 15 n‐3 and n‐6 relevant fatty acids. The effect of pH and concentration of buffer, type and concentration of organic modifier, and additive on the separation was investigated in order to determine the best conditions for the analysis. Baseline separations of the 15 fatty acids were achieved using 40 mM borate buffer at pH 9.50 containing 50 mM SDS, 10 mM β‐cyclodextrin, and 10% acetonitrile. The developed CE method has LODs of <5 mg/L and good linearity (R2 > 0.980) for all fatty acids studied. The proposed method was successfully applied to the determination of n‐3 and n‐6 fatty acids in flax seed, Udo® oils and a selection of grass‐fed and grain‐fed beef muscle samples. 相似文献