首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石墨烯-聚多巴胺纳米复合材料制备过氧化氢生物传感器   总被引:9,自引:0,他引:9  
通过合成具有仿生功能的石墨烯-聚多巴胺纳米材料,将其与辣根过氧化酶组装到电极表面,以对苯二酚为电子媒介体制备H2O2传感器.此修饰电极对H2O2具有良好的电催化活性,检测的线性范围为5.0×10-7~3.3×10-4 mol/L;线性回归方程为Y=29.69x+ 0.04577,相关系数为R=0.9995;检出限为3.7×10-7 mol/L(S/N=3).  相似文献   

2.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

3.
《Electroanalysis》2017,29(9):2044-2052
This paper demonstrated using polyethylenimine (PEI)‐functionalized graphene (Gr) incorporating tin oxide (SnO2) hybrid nanocomposite as a platform for nonenzymatic H2O2 electrochemical sensor. The results of UV‐vis spectroscopy and X‐ray diffraction (XRD) confirmed the simultaneous formation of tin oxide (SnO2) nanocomposite and reduction of graphene oxide (GO). Transmission electron microscopy (TEM) images showed a uniform distribution of nanometer‐sized tin oxide nanoparticles on the grapheme sheets, which could be achieved using stannous chloride (SnCl2) complex instead of tin oxide as precursor. The electrochemical measurements, including cyclic voltammetry (CV) and amperometric performance (I‐t), showed that the PEI‐functionalized Gr supported SnO2 (SnO2‐PEI‐Gr) exhibited an excellent electrocatalytic activity toward the H2O2. The corresponding calibration curve of the current response showed a linear detection range of 9×10−6∼1.64×10−3 mol L−1, while the limit of detection was estimated to be 1×10−6 mol L−1. Electrochemical studies indicated that SnO2 and functionalized Gr worked synergistically for the detection of H2O2.  相似文献   

4.
A novel, simple and relative highly sensitive amperometric flow biosensor for cyanide was developed by using horseradish peroxidase (HRP)‐adsorbed carbon‐felt (CF), based on an inhibitory effect on the HRP‐catalyzed O2 reduction. The HRP‐CF showed a sufficient bioelecrocatalytic activity for O2 reduction in the potential region from 0 to ?0.5 V at pH 5.0, due to a direct electron transfer‐based O2 reduction process via ferrous‐HRP and compound III. This HRP‐catalyzed O2 reduction was reversibly inhibited by cyanide, which enabled to fabricate a novel and simple reagentless (i.e., no requirement of the ordinary substrate, H2O2, and the electron transfer mediators) flow‐biosensor for cyanide. When air‐saturated 0.1 M phosphate buffer (pH 5.0) was used as a carrier under the applied potential of ?0.2 V vs. Ag/AgCl, the steady‐state base‐current due to the HRP‐catalyzed O2 reduction was reversibly inhibited by the cyanide injection (200 µL), resulting in peak‐shape current responses. The magnitude of the inhibition peak currents linearly increased with increasing concentrations of cyanide up to 1 µM, and the detection limit was found to be 0.04 µM (S/N=2). The apparent inhibition constant Ki′ was estimated to be 0.87 µM.  相似文献   

5.
《Electroanalysis》2005,17(17):1571-1577
A novel electrochemical biosensor for phenol based on immobilization of tyrosinase‐peroxidase on mesoporous silica is described. The enhanced sensitivity of the tyrosinase‐horseradish peroxidase based biosensor to phenol was observed on comparing with tyrosinase or horseradish peroxidase monoenzyme modified electrodes. Two enzymes retained their enzymatic activities for phenol determination without any mediator. The preparation conditions of the biosensor are discussed. Optimization of the experimental parameters was performed with regard to pH and operating potential. The phenol sensor exhibited a fast response of less than 10 seconds. The sensitivity of the biosensor for phenol was 14 μA μM?1 cm?2 with a linear range from 2×10?7 to 2.3×10?4 M and a detection limit of 4.1×10?9 M. The biosensor showed a good stability and reproducibility.  相似文献   

6.
以石墨烯/纳米金修饰玻碳电极为基底, 用聚乙烯醇与离子液体复合物将辣根过氧化物酶固定于电极表面, 制备了过氧化氢生物传感器. 结果表明, 在0.1 mol/L HAc-NaAc+0.1mol/L KCl(pH=6.5)中, H2O2的氧化峰电流与其浓度在9.55×10-6~6.01×10-3 mol/L间呈良好线性关系, 检出限(3S/N)为3.3×10-7 mol/L. 用标准加入法做回收实验, 回收率在93.4%~100.5%之间. 该传感器对H2O2具有较高的灵敏度和较低的检测限, 稳定性和重现性良好, 使用寿命较长, 且制作成本低, 可多次重复使用.  相似文献   

7.
3,4‐Dihydroxy‐L ‐phenylalanine (dopa) and 2‐(3,4‐dihydroxyphenyl)ethylamine (dopamine) were investigated as reducing agent and stabilizer for synthesis of gold nanoparticles (AuNPs) by one‐pot heating of a solution of HAuCl4/dopa or dopamine. AuNPs with different sizes were obtained by controlling the mass ratios of HAuCl4/dopa or dopamine. The formation mechanism for AuNPs was also proposed. Immobilization of horseradish peroxidase (HRP) and promotion of its electron transfer by polydopa film were investigated for preparation of H2O2 biosensor. Alkaline dopa solution was dropped onto a gold electrode for the formation of polydopa film. HRP was immobilized on the polydopa film through interactions between heme centre of HRP and the amine and carboxyl groups in polydopa. The AuNPs embedded in the polydopa film improved the electron transfer efficiency. These two factors allowed successful development of a H2O2 sensor with HRP@polydopa‐AuNPs electrode. Due to its biocompatibility, the polydopa‐AuNPs film provided good retention of enzyme activity and long‐term stability of the sensor. A rapid catalytic response (3 s) and a linear range from 0.006 to 5.0 mmol L?1 were obtained for H2O2. This facile preparation strategy can be extended to other enzyme‐based biosensors.  相似文献   

8.
《Electroanalysis》2017,29(11):2565-2571
MoS2 nanoflakes were prepared by exfoliating commercial MoS2 powders with the assistance of ultrasound and graphene foam was synthesized by chemical vapor deposition using nickel foam as the template. MoS2‐graphene hybrid nanosheets were developed through the combination of MoS2 nanoflakes and graphene nanosheets by ultrasonic dispersion. The hybrid nanosheets were sprayed onto the ITO coated glass, which acts as an electrode for the simultaneously electrochemical determination of levodopa and uric acid. The MoS2‐graphene hybrid nanosheets were characterized by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. The results show that the hybrid nanosheets are composed of MoS2 and graphene with a sheet‐like morphology. The sensitivity of the electrode for levodopa and uric acid is 0.36 μA μM−1 and 0.39 μA μM−1, respectively. The electrode also shows low limit of detection, good selectivity, reproducibility and stability. And it is potential for use in clinical research.  相似文献   

9.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

10.
Zenghong Xu  Chun He  Tao Sun  Li Wang 《Electroanalysis》2013,25(10):2339-2344
A highly sensitive thrombin electrochemical aptasensor with Pt nanoparticles, blocking reagent‐horseradish peroxidase (HRP) and inert graphene oxide (GO) as enhancers was successfully fabricated. Firstly, Pt nanoparticles with high surface to volume ratio could increase the amount of the immobilized redox probe hexacyanoferrate nanoparticles (NiHCFNPs) and effectively enhance the electron transfer. Secondly, HRP and Pt nanoparticles with high catalytic activity extremely amplify the electrochemical signal of NiHCFNPs toward H2O2. Lastly, inert graphene oxide (GO) labeled TBA could be used for enlarging the steric hindrance of thrombin. As a result, the aptasensor showed a high sensitivity with a detection limit of 500 fM.  相似文献   

11.
This paper describes a highly sensitive and label‐free electrochemical immunosensor for the detection of 1‐pyrenebutyric acid (PBA) which is based on a graphene (GS), chitosan (CS), and ionic liquid (IL) composite modified glassy carbon electrode (GS‐CS‐IL/GCE). The modification process was monitored by transmission electron microscopy (TEM) and cyclic voltammetry (CV). Due to the synergistic effects of GS, CS, and IL, the biosensor exhibits excellent selectivity to PBA. The current response of the proposed immunosensor decreases linearly at two concentration ranges from 0.01 to 5 and from 5 to 150 ng mL?1 with a detection limit of 0.01 ng mL?1.  相似文献   

12.
Peroxidase‐like layered double hydroxide (LDH) nanoflakes were synthesized directly and facilely by a one‐pot chemical method, hydrothermal treatment. The as‐prepared LDHs were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, Fourier transform IR, and cyclic voltammetry. The functionalized LDHs immobilized on the glassy carbon electrode exhibited a well‐defined pair of redox peaks, excellent electrocatalytic activity toward the reduction of hydrogen peroxide without inhibition of dissolved oxygen and a higher affinity for H2O2, just like the peroxidase. The low apparent Michaelis–Menten constant was only 242 μM. The electrochemical response to H2O2 shows a linear range of 12–254 μM with the calculated detection limit of 2.3 μM at a signal‐to‐noise ratio of 3. Furthermore, compared with most metal hexacyanoferrates, the peroxidase‐like LDHs are very stable in neutral and alkaline solution. The electrochemical and electrocatalytic behavior of the functionalized LDHs indicate that they may be useful to explore man‐made mimics of enzyme in electrochemical biosensors.  相似文献   

13.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

14.
A new convenient strategy to fabricate a third‐generation hydrogen peroxide biosensor was described. The screen‐printed carbon electrode (SPCE) was first modified with a layer of 4‐nitrophenyl assembled from the 4‐nitroaniline diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were converted to amines followed by crosslinking to the horseradish peroxidase (HRP) by glutaraldehyde. The redox chemistry of the active center of the HRP was observed and the HRP‐modified electrode displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. H2O2 was determined in a linear range from 5.0 μM to 50.0 μM, with a detection limit of 1.0 μM. Furthermore, the biosensor exhibited fast amperometric response, good reproducibility and long‐term stability.  相似文献   

15.
In this report, sandwiched Ni2P nanoparticles encapsulated by graphene sheets are first synthesized by directly encapsulating functional units in graphene sheets instead of fabricating separate graphene sheets and then immobilizing the functional components onto the generated surfaces. In this strategy, we use low‐cost, sustainable and environmentally friendly glucose as a carbon source and NiNH4PO4 ? H2O nanosheets as sacrificial templates. This unique structure obtained here cannot only prevent the nanoparticles from aggregation or loss but also enhance the electronic conductivity compared to the independent nanoparticles. Furthermore, the novel sandwich‐like Ni2P/C can be applied in plenty of fields, especially in electrical energy storage. In this paper, a series of electrochemical tests of the sandwich‐like Ni2P/C are carried out, which demonstrate the excellent cyclic stability and rate capacity for lithium‐ion batteries.  相似文献   

16.
β‐Cyclodextrin functionalized graphene/Ag nanocomposite (β‐CD/GN/Ag) was prepared via a one‐step microwave treatment of a mixture of graphene oxide and AgNO3. β‐CD/GN/Ag was employed as an enhanced element for the sensitive determination of 4‐nitrophenol. A wide linear response to 4‐nitrophenol in the concentration ranges of 1.0×10?8–1.0×10?7 mol/L, and 1.0×10?7–1.5×10?3 mol/L was achieved, with a low detection limit of 8.9×10?10 mol/L (S/N=3). The mechanism and the heterogeneous electron transfer kinetics of the 4‐nitrophenol reduction were discussed according to the rotating disk electrode experiments. Furthermore, the sensing platform has been applied to the determination of 4‐nitrophenol in real samples.  相似文献   

17.
Developing non‐noble‐metal electrocatalyst for non‐enzymatic H2O2 sensing is highly attractive. A facile, two‐step approach has been utilized for the synthesis of PBNCs/SnO2 QDs/RGO ternary nanocomposite. TEM, SEM, XPS, and XRD techniques were used to the characterize the structural and morphological properties of synthesized ternary nanocomposite. The synthesized ternary nanocomposite has been examined as an electrode material for the electrochemical detection of H2O2 using the Amperometry technique. Under optimum conditions, PBNCs/SnO2 QDs/RGO ternary nanocomposite performed very well in the electrocatalytic reduction of H2O2 with a linear dynamic range from 25–225 μM (R2=0.996) with a low detection limit of 71 nM (S/N=3). Compared to the recent literature, PBNCs/SnO2QDs/RGO ternary nanocomposite based modified electrode exhibit a wider linear dynamic range with a low detection limit. Furthermore, PBNCs/SnO2 QDs/RGO ternary nanocomposite based modified electrode showed an excellent anti‐interference ability against various common interfering agents. The practical applicability of this ternary nanocomposite based modified electrode was further extended to determine the H2O2 in tap water with acceptable recovery. The present performance of PBNCs/SnO2 QDs/RGO ternary nanocomposite material towards H2O2 sensing might widen its application for developing a new type of non‐noble metal‐based non‐enzymatic electrochemical biosensors.  相似文献   

18.
A glassy carbon electrode (GCE) modified with Mg‐Al‐SDS hydrotalcite‐like clay (SDS‐HTLC) was used for the sensitive voltammetric determination of 2‐nitrophenol (2‐NP) utilizing the oxidation process. The results indicate the prepared modified electrode has an excellent electrocatalytic activity toward 2‐NP oxidation, lowering the oxidation overpotential and increasing the oxidation current. Under optimal conditions, the oxidation current was proportional to 2‐NP concentration in the range from 1.0×10?6 to 6.0×10?4 M with the detection limit of 5.0×10?7 M by DPV (S/N=3). The fabricated electrode was applied for 2‐NP determination in water samples and the recovery for these samples was from 95.6 to 103.5%.  相似文献   

19.
A bioelectrochemical platform has been constructed for the direct electron transfer and biosensing purposes of microperoxidase‐11 (MP‐11) immobilized on the chitosan dispersed multilayer graphene nanocomposite. The immobilized MP‐11 at the modified gold electrode displays a well‐defined and quasireversible redox peaks, with a formal potential of ?0.38 V/SCE in a buffer solution (pH 7.0). MP‐11 absorbed on the electrode surface exhibits high electrocatalytic activity toward the reduction of both oxygen and hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2.5 to 135 μM. These results indicate the graphene modified electrode might be used as a third generation biosensor for H2O2 detection.  相似文献   

20.
A novel chromogenic method to measure the peroxidase activity using para‐phenylenediamine dihydrochloride (=benzene‐1,4‐diamine hydrochloride; PPDD) and N‐(1‐naphthyl)ethylenediamine dihydrochloride (=N‐(2‐aminoethyl)naphthalen‐1‐amine; NEDA) is presented. The PPDD entraps the free radical and gets oxidized to electrophilic diimine, which couples with NEDA to give an intense red‐colored chromogenic species with maximum absorbance at 490 nm. This assay was adopted for the quantification of H2O2 between 20 and 160 μM . Catalytic efficiency and catalytic power of the commercial peroxidase were found to be 4.47×104 M ?1 min?1 and 3.38×10?4 min?1, respectively. The catalytic constant (kcat) and specificity constant (kcat/Km) at saturated concentration of the co‐substrates were 0.0245×103 min?1 and 0.0445 μM ?1 min?1, respectively. The chromogenic coupling reaction has a minimum interference from the reducing substances such as ascorbic acid, L ‐cystein, citric acid, and oxalic acid. The method being simple, rapid, precise, and sensitive, its applicability has been tested in the crude vegetable extracts that showed peroxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号