首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The θ/2 method, a widely used technique on measuring the contact angle of a sessile drop, assumes that the drop profile is part of a sphere. However, the shape profile of a sessile drop is governed by the Young–Laplace equation and is different from a sphere, especially for drops with a large bound number (e.g. large volume or small surface tension). The spherical assumption, therefore, causes errors on evaluating the contact angles. The deviation of contact angle from the θ/2 method is evaluated from a theoretical calculation in this work. A simple means is given for correcting the measurement error. The corrected angle results from the drop volume, surface tension, liquid density and the contact angle from θ/2 method. An algorithm for finding the correct contact angle without knowing the density and surface tension is also given. At the end, two examples of pendant drops are given for the illustration.  相似文献   

2.
The performance of a new algorithm developed to measure contact angle and surface tension of sessile drops is examined. To calculate the contact angle and surface tension, the new algorithm (ADSA-TD) requires the radius (contact or equatorial) and volume of two sessile drops of different sizes that are placed on the same surface. Initially, the algorithm was tested using synthetic drops (synthetic or theoretical drops are produced by numerical integration of the Laplace equation). The radii and volumes of synthetic drops were used as ADSA-TD inputs. The calculated contact angle (θ) and surface tension (γ) by ADSA-TD matched perfectly the assumed values of θ and γ used to produce the synthetic drops, confirming theoretically the validity of the new algorithm. In the next step, the sensitivity of the algorithm to input errors was examined. It was shown experimentally that both calculated contact angle and surface tension are affected by the errors in volume and radius. Besides the error in input values, it was shown that the size difference between the paired drops and the differences in their contact angles would affect the output of ADSA-TD. As it turns out, the calculated surface tension is so sensitive to the above factors that ADSA-TD does not appear to be promising as a surface tension measurement technique. However, ADSA-TD produced acceptable contact angle values as compared to measurements made by other proven techniques such as axisymmetric drop shape analysis-profile. Thus, ADSA-TD may be of interest as a contact angle measurement technique which does not require the liquid surface tension as input.  相似文献   

3.
Currently, there is no conclusive evidence regarding the global equilibrium condition of vibrated drops. However, it is well-known that vibration of sessile drops effectively reduces the contact angle hysteresis. In this work, applying a recent methodology for evaluating the most-stable contact angle, we examined the impact of the type of excitation signal (random signal versus periodical signal) on the values of the most-stable contact angle for polymer surfaces. Using harmonic signals, the oscillation frequency affected the postvibration contact angle. Instead, the white noise signal enabled sessile drops to relax regardless of their initial configuration. In spite of that, the values of most-stable contact angle obtained with different signals mostly agreed. We concluded that not only the amount of relaxation can be important for relaxing a sessile drop but also the rate of relaxation. Together with receding contact angle, most-stable contact angle, measured with the proposed methodology, was able to capture the thermodynamic changes of "wetted" polymer surfaces.  相似文献   

4.
Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased optical noise in the drop profile near the solid-liquid free surface and the progressive failure of simple geometric approximations. We demonstrate a systematic approach to determining the effective contact angle of drops on super-repellent surfaces. We use a perturbation solution of the Bashforth-Adams equation to estimate the contact angles of sessile drops of water, ethylene glycol, and diiodomethane on an omniphobic surface using direct measurements of the maximum drop width and height. The results and analysis can be represented in terms of a dimensionless Bond number that depends on the maximum drop width and the capillary length of the liquid to quantify the extent of gravity-induced sagging. Finally, we illustrate the inherent sensitivity of goniometric contact angle measurement techniques to drop dimensions as the apparent contact angle approaches 180°.  相似文献   

5.
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles.  相似文献   

6.
This paper introduces a robust algorithm to determine the interfacial tension (gamma) from pendant drop profiles using the Galerkin finite element method (gamma-PD-FEM) to solve the axisymmetric form of the Young-Laplace (YL) equation. In this algorithm, the theoretical profiles are generated by solving the spherical coordinate form of the YL equation. gamma-PD-FEM also solves for the parameter estimates by minimizing the difference between the theoretical and experimental surface functions, f(theta). This technique is compared to the widely used method of converting the YL equation to the three arc length-based (ALB) first-order ODEs developed by Bashforth and Adams (BA) in 1883, or as denoted in this paper, the gamma-PD-BA method. The drop apex is the initial condition for the gamma-PD-BA algorithm and the integration is terminated at a specified location along the drop profile. In contrast to techniques based on the BA approach, computation of the theoretical drop profile in gamma-PD-FEM is obtained from a second-order ordinary differential equation and requires boundary conditions at the drop apex and at the contact line of the drop to the nozzle. By incorporating both boundary conditions into the problem formulation, the algorithm can also determine if the drop shape is at static equilibrium. Results to be presented include an outline of the computer algorithm, and comparison of gamma values obtained from the gamma-PD-FEM and the traditional gamma-PD-BA method using simulated and experimental drop profile data sets.  相似文献   

7.
Wetting and absorption of water drops on Nafion films   总被引:1,自引:0,他引:1  
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.  相似文献   

8.
The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.  相似文献   

9.
An analytical solution to the capillary equation of Young and Laplace is derived that allows determination of the static contact angle based on the volume of a sessile drop and the wetted area of the substrate. This solution does not require numerical integration to determine the drop profile and accounts for surface deformation due to gravitational effects. Calculation of the static contact angle by this method is remarkably simple and accurate when the contact angle is less than 30 degrees. A natural scaling arises in the solution, which provides indication of when a drop is small enough so as to neglect gravitational influences on the surface shape which, for small contact angles, is generally less than 1 microl. The technique described has the simplicity of the spherical cap approximation but remains accurate for any size of sessile drop.  相似文献   

10.
The shape of liquid drops on solid surfaces deviates from the spherical as tension decreases and gravity effects start affecting the drop shape. This paper attempts to define this deviation and estimates the dimensionless Eotvos number limits above which the deviation becomes "significant." The use of these limiting values can facilitate estimation of contact angle in the following manner. It is well known that the equilibrium contact angle made by a liquid drop on a solid surface can be estimated from measurements of two drop parameters. These parameters can be any two chosen from the drop volume, height, and wetted radius. In case the effect of gravity on the drop shape is negligible, simple algebraic relations derived from the spherical section assumption exist, from which the contact angle can be estimated. In systems where the "spherical section" assumption is invalid, the Laplace equation for the drop shape has been solved numerically with any two of the above parameters as the constraints, to obtain the contact angle. In this paper, Eotvos numbers at which the deviation of the drop profile from the spherical is significant enough to result in contact angle deviation of 1 degrees are estimated. The limiting values of Eotvos number, expressed as a function of the original contact angle made by the spherical profile, are obtained by solving the Laplace equation for the drop shape with the drop volume and wetted radius constraints for decreasing values of Interfacial tension. These limiting values are also estimated for different drop sizes and for cases where the drop phase is heavier (sessile) and lighter (buoyant) than the surrounding fluid. The independence of the Eotvos number estimates from the sign of the density difference as well as the drop size is shown. These Eotvos number limits can be used to check if the spherical section assumption, with the resulting simple algebraic relations, can be used for contact angle estimation and other shape-related analysis for a system.  相似文献   

11.
Axisymmetric drop-shape analysis-no apex (ADSA-NA) is a recent drop-shape method that allows the simultaneous measurement of contact angles and surface tensions of drop configurations without an apex (i.e., a sessile drop with a capillary protruding into the drop). Although ADSA-NA significantly enhanced the accuracy of contact angle and surface tension measurements compared to that of original ADSA using a drop with an apex, it is still not as accurate as a surface tension measurement using a pendant drop suspended from a holder. In this article, the computational and experimental aspects of ADSA-NA were scrutinized to improve the accuracy of the simultaneous measurement of surface tensions and contact angles. It was found that the results are relatively insensitive to different optimization methods and edge detectors. The precision of contact angle measurement was enhanced by improving the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. To optimize the experimental design, the capillary was replaced with an inverted sharp-edged pedestal, or holder, to control the drop height and to ensure the axisymmetry of the drops. It was shown that the drop height is the most important experimental parameter affecting the accuracy of the surface tension measurement, and larger drop heights yield lower surface tension errors. It is suggested that a minimum nondimensional drop height (drop height divided by capillary length) of 1.7 is required to reach an error of less than 0.2 mJ/m(2) for the measured surface tension. As an example, the surface tension of water was measured to be 72.46 ± 0.04 at 24 °C by ADSA-NA, compared to 72.39 ± 0.01 mJ/m(2) obtained with pendant drop experiments.  相似文献   

12.
Drop shape techniques, such as axisymmetric drop shape analysis, are widely used to measure surface properties, as they are accurate and reliable. Nevertheless, they are not applicable in experimental studies dealing with fluid configurations that do not present an apex. A new methodology is presented for measuring interfacial properties of liquids, such as surface tension and contact angles, by analyzing the shape of an axisymmetric liquid-fluid interface without use of apex coordinates. The theoretical shape of the interface is generated numerically as a function of surface tension and some geometrical parameters at the starting point of the interface, e.g., contact angle and radius of the interface. Then, the numerical shape is fitted to the experimental profile, taking the interfacial properties as adjustable parameters. The best fit identifies the true values of surface tension and contact angle. Comparison between the experimental and the theoretical profiles is performed using the theoretical image fitting analysis (TIFA) strategy. The new method, TIFA-axisymmetric interfaces (TIFA-AI), is applicable to any axisymmetric experimental configuration (with or without apex). The versatility and accuracy of TIFA-AI is shown by considering various configurations: liquid bridges, sessile and pendant drops, and liquid lenses.  相似文献   

13.
紫外光引发LDPE膜接枝含氟丙烯酸酯的研究   总被引:7,自引:0,他引:7  
通过紫外光引发表面接枝聚合反应的方法 ,把含氟丙烯酸酯单体R 5 6 1 0引到LDPE薄膜上 .对经丁酮抽提后的接枝膜进行FTIR、ESCA、SEM和DSC等表征 ,证实含氟聚合物以化学键的方式接枝在LDPE基体膜上 .在一定范围内 ,增加紫外光强、引发剂和单体浓度以及反应温度等均有利于提高接枝率 .经计算R 5 6 1 0的紫外光引发接枝聚合反应总活化能为 5 4 2kJ mol.接枝膜的接触角随着接枝率的提高逐步增大 ,直至趋于恒定 .作者提出接枝膜存在一个在接触角测定时影响基体膜与探测水滴相互作用过程的边界层 .当接枝率较低、接枝层厚度小于边界层临界厚度时 ,基体LDPE影响接触角的大小 ,但随着接枝率提高 ,接枝层逐渐变厚 ,氟聚合物层对接触角的贡献逐渐占优势 ,导致接触角随之增大 .当接枝率超过一定值以后 ,接枝层厚度超过边界层临界厚度 ,接枝层对接枝膜的接触角起全部贡献 ,接触角测定值随之稳定  相似文献   

14.
A new methodology capable of providing reliable and reproducible contact angle (theta) data has been employed to study the effect of clinical treatments grinding, acid etching, and deproteinization on medial dentin tissue. It is based on the application of the ADSA-CD algorithm to the determination of low-rate dynamic contact angles, obtained from slowly growing drops, and on contact angle measurement, as well as spreading behavior analysis, during the relaxation of the system (water on treated dentin) after initial drop growth. The theta data obtained were substantially more reproducible than those obtained with classical methods. A net effect of the treatment on theta was found, increasing dentin wettability: theta (polished) >theta (etched) >theta (deproteinized). The spreading rates correlate with the angles and are adequate for the dentin surface characterization. ANOVA and SNK tests show that for advancing contact angles the means corresponding to all treatments are significantly different. In the relaxing phase, mean angle and spreading rates on polished dentin differ significantly from those on etched and deproteinized dentin, but the latter do not differ significantly from each other.  相似文献   

15.
16.
In this article, a new method is proposed to approximate the shapes of liquid drops on vertical and inclined surfaces. Based on observations from Part I, the profile of a drop at a given azimuthal angle is approximated by two circles sharing a common tangent at the maximum height. The drop volume is obtained by integrating all profiles over the circumference of the base. The volume is thus described as a function of the contact angles and the three-phase contact line. The new method accurately predicts the volumes of drops tested in Part I and independent measurements from the literature. Simplifying the drop shape to a spherical cap can lead to a 75% error in drop-volume prediction. The proposed method is used to study the effect of drop parameters on volume prediction. The two-circle geometry can also be used to measure contact angles from profile images.  相似文献   

17.
贺承祖  赵波  唐致霞 《化学通报》2021,84(4):394-399
接触角在胶体与表面化学、矿物浮选、洗涤和油气开采等领域是一项重要的物性参数.本文提出椭圆法计算接触角的公式,在接触角小于90°时,利用测量出的椭圆的长轴和短轴半径和油-水-固接触点的坐标计算接触角;在接触角大于90°时,只需在椭圆轮廓线上选择两点,测量四个数据计算接触角,该方法计算公式比较简单,便于推广应用.本文提出将...  相似文献   

18.
A simulation study of liquid drops on inclined surfaces is performed in order to understand the evolution of drop shapes, contact angles, and retention forces with the tilt angle. The simulations are made by means of a method recently developed for dealing with contact angle hysteresis in the public-domain Surface Evolver software. The results of our simulations are highly dependent on the initial contact angle of the drop. For a drop with an initial contact angle equal to the advancing angle, we obtain results similar to those of experiments in which a drop is placed on a horizontal surface that is slowly tilted. For drops with an initial contact angle equal to the mean between the advancing and the receding contact angles, we recover previous results of finite element studies of drops on inclined surfaces. Comparison with experimental results for molten Sn-Ag-Cu on a tilted Cu substrate shows excellent agreement.  相似文献   

19.
A quantitative criterion called “shape parameter” to evaluate the quality of surface tension measurement of Axisymmetric Drop Shape Analysis (ADSA) is presented. ADSA is a powerful technique for the measurement of interfacial tensions and contact angles of pendant drops, sessile drops, and bubbles. Despite the general success of ADSA, deficient results may be obtained for drops close to spherical shape. Therefore, the “shape parameter” was used to determine the range of drop shapes in which ADSA succeeds or fails. The “shape parameter” is a dimensionless parameter that expresses quantitatively the difference in shape between a given experimental profile and an inscribed circle. The surface tension measurements of ADSA were evaluated for both pendant drop and constrained sessile drop configurations using the shape parameter. Different shapes of the pendant drop were studied using different sizes and materials of holders. For each drop configuration, a “critical shape parameter” was defined based on the minimum value of the shape parameter that guarantees an error of less than ±0.1 mJ/m2. Furthermore, the effects of the type of liquid and constellation on the “critical shape parameter” were studied.  相似文献   

20.
One of the simplest methods of measuring the quantities for estimating the adhesion properties of materials (i.e., the adhesion work, the surface energy, and the interfacial tension between certain liquids and a surface) requires the determination of the contact angle between the liquid and the surface. In the case of plane surfaces the determination of the drop dimensions makes it possible to calculate the contact angle by the sessile drop method, but in the case of cylindrical surfaces (such as the monofilaments), several methods were developed to improve the accuracy of the contact angle measurements. This paper presents a comprehensive method for precise evaluation of the contact angle between liquid drops and monofilaments by establishing a differential equation describing the drop contour. This equation makes it possible to accurately compute the contact angle using the dimensions of the drop. A comparison of the values of the contact angle calculated by our method and those obtained by other approaches is made. We applied our method in the case of polyamide-6 monofilaments treated using dielectric barrier discharge, knowing their medical applications in surgical sutures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号