首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
Absolute and conditional statistical properties of a pulse coherent Doppler lidar signal in a turbulent atmosphere are studied. Upon coherent receiving of optical fields scattered by a large number of particles, the lidar signal is shown to be a nonstationary non-Gaussian random process with Gaussian conditional statistical characteristics. The appearance of non-Gaussian properties of the signal is caused by correlation of turbulent fluctuations of the wind velocity field within the scattering volume. For the considered signal model, which corresponds to the single scattering approximation and is a sum of a large number of random variables, the central limit theorem is found to be untrue due to the statistical dependence of particles’ positions in a turbulent atmosphere. The results of numerical calculations show that, for a homogeneous and isotropic turbulence, the behavior of the signal statistics significantly depends on the size of the scattering volume and on the state of atmospheric turbulence. A Gaussian statistics is observed at small heights; with an increase in height, the non-Gaussian component becomes considerable in fluctuations of the lidar signal.  相似文献   

2.
为了研究大气湍流对高斯涡旋光束传递信息的影响,理论分析了经过大气湍流的高斯涡旋光束轨道角动量(OAM)模式的径向平均功率和归一化平均功率分布、固有模式指数、初始光束半径和湍流强度;采用纯相位扰动逼近的有效性,数值模拟高斯涡旋光束在传输中的OAM模式径向平均功率分布的变化。建立传输模型并进行外场激光大气传输实验,对比分析了模拟和实测的OAM归一化平均功率分布,结果表明在弱湍流条件下,OAM模式的径向平均功率随着接收器孔径尺寸的增加而变化,逐渐趋于稳定值。对于一般常用的接收孔径,在强湍流或较小的初始光束半径条件下对OAM模式干扰十分严重。验证了用数值方法模拟OAM在湍流介质中的模式变化过程的可靠性。  相似文献   

3.
The inertial range for a statistical turbulent velocity field consists of those scales that are larger than the dissipation scale but smaller than the integral scale. Here the complete scale-invariant explicit inertial range renormalization theory for all the higher-order statistics of a diffusing passive scalar is developed in a model which, despite its simplicity, involves turbulent diffusion by statistical velocity fields with arbitrarily many scales, infrared divergence, long-range spatial correlations, and rapid fluctuations in time-such velocity fields retain several characteristic features of those in fully developed turbulence. The main tool in the development of this explicit renormalization theory for the model is an exact quantum mechanical analogy which relates higher-order statistics of the diffusing scalar to the properties of solutions of a family ofN- body parabolic quantum problems. The canonical inertial range renormalized statistical fixed point is developed explicitly here as a function of the velocity spectral parameter, which measures the strength of the infrared divergence: for<2, mean-field behavior in the inertial range occurs with Gaussian statistical behavior for the scalar and standard diffusive scaling laws; for>2 a phase transition occurs to a fixed point with anomalous inertial range scaling laws and a non-Gaussian renormalized statistical fixed point. Several explicit connections between the renormalization theory in the model and intermediate asymptotics are developed explicitly as well as links between anomalous turbulent decay and explicit spectral properties of Schrödinger operators. The differences between this inertial range renormalization theory and the earlier theories for large-scale eddy diffusivity developed by Avellaneda and the author in such models are also discussed here.  相似文献   

4.
《Physica A》2006,368(1):247-256
Accounting for the current knowledge of the stable atmospheric boundary layer (ABL) turbulence structure and characteristics, a new formulation for the meandering parameters to be used in a Lagrangian stochastic particle turbulent diffusion model has been derived. That is, expressions for the parameters controlling the meandering oscillation frequency in low wind speed stable conditions are proposed. The classical expression for the meandering autocorrelation function, the turbulent statistical diffusion theory and ABL similarity theory are employed to estimate these parameters. In addition, this new parameterization was introduced into a particular Lagrangian stochastic particle model, which is called Iterative Langevin solution for low wind, validated with the data of Idaho National Laboratory experiments, and compared with others diffusion models. The results of this new approach are shown to agree with the measurements of Idaho experiments and also with those of the other atmospheric diffusion models. The major advance shown in this study is the formulation of the meandering parameters expressed in terms of the characteristic scales (velocity and length scales) describing the physical structure of a turbulent stable boundary layer. These similarity formulas can be used to simulate meandering enhanced diffusion of passive scalars in a low wind speed stable ABL.  相似文献   

5.
Isothermal and reactive turbulent opposed flows are presented, which are appropriate to test the applicability and performance of models for turbulence, mixing, chemical reaction, and turbulence-chemistry interaction. Transient flow and scalar fields are measured using laser Doppler velocimetry and one-dimensionally resolved Raman/Rayleigh spectroscopy. Aside of statistical moments of temperature, mean species, and velocity components, scalar dissipation rate across the mixing and reaction layer is determined on a single-shot base. Using large eddy simulation in connection with a steady flamelet model, it is shown how numerical data can serve to estimate the influence of experimental noise upon a measured quantity, such as scalar dissipation. As a key result, it is shown that an increase in scalar rate of dissipation by chemical reactions is caused by a significant increase in the mixture fraction diffusivity, which outweighs the decrease in mixture fraction gradients. In mixture fraction space, local maxima of scalar dissipation rate are found on the rich side, which cannot be correctly reproduced by the steady flamelet model assuming equal species diffusivity. Furthermore, the impact of experimental noise on conditional probability density functions of scalar dissipation rate is shown (exemplary) to lead to erroneous conclusions from experimental data.  相似文献   

6.
The single-point (SP) velocity statistics are investigated in forced and decaying two-dimensional turbulence in a flowing soap film. It is shown that the probability distribution functions (PDF) in both cases deviate from a Gaussian distribution, which is normally anticipated in turbulent fluid flows. In the forced turbulence case, the tail of the SP velocity PDF decays faster than Gaussian (termed the sub-Gaussian) and can be correlated with the forcing statistics on small scales. In the decaying-turbulence case, the SP velocity PDF evolves from a sub-Gaussian to a super-Gaussian behavior as a function of time. However, in all times, the locally averaged vorticity remains normally distributed. While our forced turbulence data may be explained by a recent theory proposed by Falkovich et al., the decaying-turbulence data remain unexplained.  相似文献   

7.
Numerical evidence of nondiffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracer particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time that incorporate in a unified way space-time nonlocality (non-Fickian transport), non-Gaussianity, and nondiffusive scaling. The fractional diffusion model reproduces the shape and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed superdiffusive scaling.  相似文献   

8.
9.
The intermittent distribution of localized turbulent structures is a key feature of the subcritical transitions in channel flows, which are studied in this paper with a wind channel and theoretical modeling. Entrance disturbances are introduced by small beads, and localized turbulent patches can be triggered at low Reynolds numbers (Re). High turbulence intensity represents strong ability of perturbation spread, and a maximum turbulence intensity is found for every test case as Re ≥ 950, where the turbulence fraction increases abruptly with Re. Skewness can reflect the velocity defects of localized turbulent patches and is revealed to become negative when Re is as low as about 660. It is shown that the third-order moments of the midplane streamwise velocities have minima, while the corresponding forth-order moments have maxima during the transition. These kinematic extremes and different variation scenarios of the friction coefficient during the transition are explained with an intermittent structure model, where the robust localized turbulent structure is simplified as a turbulence unit, a structure whose statistical properties are only weak functions of the Reynolds number.  相似文献   

10.
The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence.  相似文献   

11.
彭哲  靖旭  侯再红  吴毅 《物理学报》2017,66(10):104207-104207
根据Rytov近似以及泰勒湍流冻结假设,推导出以不同距离的前向散射光为信标的水平路径上梯度倾斜角的相关表达式.基于该表达式,在理论上提出了计算湍流强度与横向风速的新方法,并通过数值仿真对该方法进行了初步验证.结果表明,在5%高斯误差情况下,大气折射结构常数和风速的计算结果与理论真值在整体变化上具有较好的一致性,线性相关系数分别能达到0.8与0.9.该方法能够得到不同湍流与风速条件下的湍流强度廓线以及风速廓线,为反演大气湍流强度以及风速提供了一种新思路.  相似文献   

12.
The zone conditional conservation equations are derived and validated against the DNS data of a freely propagating one-dimensional turbulent premixed flame. Conditional flow velocities are calculated by the conditional continuity and momentum equations, and a modeled transport equation for the Reynolds average reaction progress variable. An asymptotic formula for turbulent burning velocity is obtained with the effects of a finite Damköhler number accounted for as an additional factor. It is shown that flame generated turbulence is primarily due to correlations between fluctuating gas velocities and fluctuating unit normal vector on a flame surface. More investigation is required to validate general predictive capability of the derived conditional conservation equations and the relationships modeled for closure.  相似文献   

13.
By using a large amount of data collected in the atmospheric surface layer, we analyze the probability density functions (PDFs), the probability of return and the moments of wind velocity increments. Results show that the PDFs change from the non-Gaussian long-tailed distributions to Gaussian with the increase of time scales. This is similar to what has been observed and interpreted as an indication of cascade in the fully developed homogeneous and isotropic turbulence. Besides, both the probability of return and the moments are found to be scaling with time scales. We then compare above results with the truncated Lévy flights and the log-normal PDF model. It is found that although both models show the cascade-like behavior in the PDFs and the scaling behavior in the probability of return and the moments under some conditions, they are not good enough for quantitatively describing the random process of wind velocity increments.  相似文献   

14.
Predicting broadband fan noise is key to reduce noise emissions from aircraft and wind turbines. Complete CFD simulations of broadband fan noise generation remain too expensive to be used routinely for engineering design. A more efficient approach consists in synthesizing a turbulent velocity field that captures the main features of the exact solution. This synthetic turbulence is then used in a noise source model. This paper concentrates on predicting broadband fan noise interaction (also called leading edge noise) and demonstrates that a random particle mesh method (RPM) is well suited for simulating this source mechanism. The linearized Euler equations are used to describe sound generation and propagation. In this work, the definition of the filter kernel is generalized to include non-Gaussian filters that can directly follow more realistic energy spectra such as the ones developed by Liepmann and von Kármán. The velocity correlation and energy spectrum of the turbulence are found to be well captured by the RPM. The acoustic predictions are successfully validated against Amiet’s analytical solution for a flat plate in a turbulent stream. A standard Langevin equation is used to model temporal decorrelation, but the presence of numerical issues leads to the introduction and validation of a second-order Langevin model.  相似文献   

15.
Through the use of the Novikov-Furutsu formula for Gaussian processes an equation is obtained for the diffusion of the ensemble average of a passive scalar in an incompressible turbulent velocity field in terms of the two-point, two-time correlator of this field. The equation is valid for turbulence which is not necessarily homogeneous or stationary and thus generalizes previous work.  相似文献   

16.
An explicit algebraic model of Reynolds stresses and the turbulent heat flux vector for the planetary boundary layer in a neutrally stratified boundary layer of the atmosphere above a homogeneous rough surface is tested. The version of the algebraic model under consideration is constructed on the physical principles of the RANS (Reynolds-averaged Navier?Stokes) approximation for describing stratified turbulence, it employs three forecasting equations, and a correct reproduction of the main characteristics of a neutral atmospheric boundary layer — the components of the mean wind velocity, the wind turn angle, and the turbulent statistics is shown. Test computations show that the proposed model may be used for goal-oriented investigations of the atmospheric boundary layer.  相似文献   

17.
The turbulent regime of a rotating magnetized plasma column has been studied. The detection and the spatiotemporal analysis of structures by means of conditional sampling techniques is performed. Because of the overall rotation and centrifugal effects, the structures inside the turbulence move on average along a spiral trajectory leading to a net radial convection of the charged particles to the walls. The development of a poloidal electric field inside the structures has been measured. It leads to the observed outwards radial E x B drift in agreement with the expectations of recent theoretical works.  相似文献   

18.
The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed. Supported by the National Natural Science Foundation of China (Grant No. 10472081), the Program for New Century Excellent Talents in Universities of Ministry of Education of China, and Tianjin Science and Technology Development Plan (Grant No. 06TXTJJC13800)  相似文献   

19.
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency.  相似文献   

20.
Propagation of coherent combined laser beams in turbulent atmosphere is numerically studied based on the extended Huygens-Fresnel principle. By choosing beam propagation factor (BPF) and beam quality factor (BQ) to characterize the far-field irradiance distribution properties, the influence of turbulence on far-field coherent combined beam quality is studied in detail. The investigation reveals that with the coherence length decreasing, the irradiance distribution pattern evolves from typical non-Gaussian shape with multiple side-lobes into Gaussian shape which is seen in the incoherent combining case. In weak turbulent atmosphere, the far-field beam quality suffers less when the 1aser array gets more compact and operates at a longer wavelength. In strong turbulent atmosphere, the far-field beam quality degrades into the incoherent combining case without any relationship with the fill factor and laser wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号