首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A K SOMA  L SINGH  M K SINGH  V SINGH  H T WONG 《Pramana》2012,79(5):1331-1335
The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino?CChina dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the possibilities of neutrino-nucleus coherent scattering observation. This article will introduce the facilities of newly established China Jing-Ping Underground Laboratory (CJPL), preliminary result of cosmic ray background studies at CJPL, the dark matter studies pursued at Kuo-Sheng Neutrino Laboratory (KSNL) and research efforts to accomplish our physics goals.  相似文献   

2.
毕效军  秦波 《物理》2011,40(1):13-17
文章首先对暗物质的概念作了简单介绍,接着介绍了暗物质的发现过程和暗物质存在的证据等.随后,介绍了目前人们对暗物质粒子基本性质的理解和目前比较流行的暗物质模型,并解释了弱相互作用重粒子(WIMP)为什么获得人们最多的关注.文中还简单介绍了目前探测暗物质粒子的三种实验方法:对撞机探测法、直接探测法和间接探测法.最后,介绍了目前暗物质探测的最新进展,包括来自DAMA,CoGent,PAMELA,ATIC,Fermi等实验的最新结果.  相似文献   

3.
The detection of dark matter has made great progresses in recent years. We give a brief review on the status and progress in dark matter detection, including the progresses in direct detection, collider detection at LHC and focus on the indirect detection. The results from PAMELA, ATIC, Fermi-LAT and relevant studies on these results are introduced. Then we give the progress on indirect detection of gamma rays from Fermi-LAT and ground based Cerenkov telescopes. Finally the detection of neutrinos and constraints on the nature of dark matter are reviewed briefly.  相似文献   

4.
We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the positron experiments such as the PAMELA, its nature will be investigated in detail at the ILC.   相似文献   

5.
The dark matter sector may be more complicated than anticipated. An inelastically scattering dark matter with a mass splitting above one MeV will make direct detection experiments hopeless, and render LHC the primary chance for discovery. We perform a model-independent study of inelastic dark matter at the LHC, concentrating on the parameter space with the mass splitting between the excited and ground states of dark matter above a few hundred MeV. The generic signatures of inelastic dark matter at the LHC are displaced pions together with a monojet plus missing energy, and can be tested at the 7 TeV LHC.  相似文献   

6.
《Comptes Rendus Physique》2016,17(6):649-662
The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter.  相似文献   

7.
20世纪30年代天文学观测对标准宇宙模型提出了严峻挑战,为了调和观测数据与理论模型的矛盾,理论物理学家提出了暗物质理论;此后,实验物理学家据此摸索出了各种暗物质探测方案.本文将从暗物质概念的由来、暗物质基本性质、暗物质探测原理及方法和DAMPE在探测暗物质方面的最新进展几个方面展开介绍.重点以DAMPE的数据为基础,以电子谱分析为核心,在前人的研究基础上,对DAMPE数据和结果进行多层次、多方位的综合,进一步阐述了DAMPE电子谱中出现的TeV拐折和尖锐信号包含的深刻意义;最后依托研究过程中得到的一些信息,对未来暗物质探测实验提出一点看法和见解.  相似文献   

8.
A new class of sterile neutrino dark matter is suggested by an explanation for time variations in the solar neutrino flux in which coupling of sterile neutrinos to other matter is via a very small flavor off-diagonal transition magnetic moment, TMM. The dark matter sterile neutrino’s decay in the radiative channel then depends on the local magnetic field and the unknown value of the TMM. An interesting application of this model uses the DAMA/LIBRA claimed detection of dark matter (assuming they are observing the electromagnetic signal) to provide the decay rate in the Earth’s field, and hence the TMM value. That version of the model is then examined to see if it can be falsified by cosmic X-ray observations or by other direct detection experiments. Particularly the latter could provide a simple, definitive test of this dark matter candidate, which would bring concordance to these experiments.  相似文献   

9.
I discuss the prospects of detecting the smallest dark matter bound structures present in the Milky Way by searching for the proper motion of gamma-ray sources in the upcoming Gamma Ray Large Area Space Telescope all sky map. I show that for dark matter particle candidates that couple to photons the detection of at least one gamma-ray microhalo source with proper motion places a constraint on the couplings and mass of the dark matter particle.  相似文献   

10.
We study dark matter production at CERN LHC from black hole remnants (BHR). We find that the typical mass of these BHR at the LHC is ∼5–10 TeV which is heavier than other dark matter candidates, such as axion, axino, neutralino, etc. We propose the detection of this dark matter via single jet production in the process pp → jet + BHR (dark matter) at CERN LHC. We find that for zero impact parameter partonic collisions, the monojet cross section is not negligible in comparison to the standard model background and is much higher than the other dark matter scenarios studied so far. We also find that dσ/dp T of jet production in this process increases as p T increases, whereas in all other dark matter scenarios the dσ/dp T decreases at CERN LHC. This may provide a useful signature for dark matter detection at the LHC. However, we find that when the impact parameter dependent effect of inelasticity is included, the monojet cross section from the above process becomes much smaller than the standard model background and may not be detectable at the LHC.  相似文献   

11.
A very active hunt is underway to discover the composition of dark matter in the universe. A large effort is devoted to the direct detection of dark matter through interactions with detectors in the laboratory. In this paper, we give an overview of the dark matter problem, discuss some of the design considerations taken in direct detection experiments, and describe some of the current efforts to discover Weakly Interacting Massive Particles (WIMPs), a well-motivated class of candidates for dark matter.  相似文献   

12.
The question of the nature of dark matter in the universe is perhaps the greatest problem facing cosmology and particle physics at present. New observations of the cosmic microwave background radiation and distant supernovae show that more that 90% of the mass in the universe is in the form of some unknown matter. Many lines of evidence from cosmology and particle physics suggest that the best candidate for this dark matter is a weakly interacting massive particle, or WIMP. Such particles are predicted by supersymmetry, a theory extending the Standard Model of particle physics, and many experiments around the world are now trying to directly detect these WIMPs. This article reviews the reasons for believing WIMPs to be the dark matter, and considers the challenges involved in detecting their rare low-energy interactions with normal matter. Current experimental searches are reviewed with regard to the claimed detection of WIMPs by the DAMA group. These experiments are just beginning to reach the sensitivity needed to detect, or rule out, supersymmetric WIMPs, and higher sensitivity future experiments are also discussed.  相似文献   

13.
One can expect accessible lower bounds for the dark matter detection rate due to restrictions on masses of the SUSY partners. To explore this correlation, one needs a new-generation large-mass detector. The absolute lower bound for the detection rate can naturally be due to spin-dependent interaction. Aimed at detecting dark matter with sensitivity higher than 10?5 event/kg/d, an experiment should have a nonzero-spin target. Perhaps, it is best to create a GENIUS-like detector with both 73Ge (high spin) and 76Ge nuclei.  相似文献   

14.
Dark matters     
Despite the new results on the estimate of cosmological parameters, the need for dark matter, both baryonic and nonbaryonic, galactic and intergalactic, is still with us. For baryonic dark matter the remaining possibilities are mostly either intergalactic hot gas or massive compact halo objects. For nonbaryonic dark matter the most likely candidates are the so-called WIMPs, the prototype of which could be the lightest supersymmetric particle. These particles are actively searched for at accelerators and, in our neighborhood, through direct detection or by their annihilation products.  相似文献   

15.
The Sagittarius dwarf tidal stream may be showering dark matter onto the solar neighborhood, which can change the results and interpretation of direct detection searches for weakly interacting massive particles (WIMPs). Stars in the stream may already have been detected in the solar neighborhood, and the dark matter in the stream is (0.3-25)% of the local density. Experiments should see an annually modulated steplike feature in the energy recoil spectrum that would be a smoking gun for WIMP detection. The total count rate in detectors is not a cosine curve in time and peaks at a different time of year than the standard case.  相似文献   

16.
We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos, and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.  相似文献   

17.
The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Modern particle theories provide viable cold dark matter candidates with masses in the GeV-TeV region. All such candidates will be called WIMPs (Weakly Interacting Massive Particles). The nature of dark matter can only be unraveled by its direct detection in the laboratory. In this work we present some theoretical elements relevant to the direct dark matter detection experiments, paying particular attention to directional experiments, i.e. experiments in which not only the energy but the direction of the recoiling nucleus is observed. Since the direction of observation is fixed with respect to the Earth, while the Earth is rotating around its axis, in a directional experiment the angle between the direction of observation and the Sun’s direction of motion will change during the day. So, since the event rates sensitively depend on this angle, the observed signal in such experiments will exhibit very interesting and characteristic periodic diurnal variation.  相似文献   

18.
We present a simple extension of the minimal supersymmetric standard model which provides a unified picture of cosmological baryon asymmetry and dark matter. Our model introduces a gauge singlet field N and a color triplet field X which couple to the right-handed quark fields. The out-of-equilibrium decay of the Majorana fermion N mediated by the exchange of the scalar field X generates adequate baryon asymmetry for MN approximately 100 GeV and MX approximately TeV. The scalar partner of N (denoted N1) is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10(10)sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range.  相似文献   

19.
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5–10–3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.  相似文献   

20.
Weakly Interacting Massive Particles (WIMPs) are among the main candidates for the relic dark matter (DM). The idea of the direct DM detection relies on elastic spin-dependent (SD) and spin-independent (SI) interaction of WIMPs with target nuclei. In this review paper the relevant formulae for WIMP event rate calculations are collected. For estimations of the WIMP-proton and WIMP-neutron SD and SI cross sections the effective low-energy minimal supersymmetric standard model is used. The traditional one-coupling-dominance approach for evaluation of the exclusion curves is described. Further, the mixed spin-scalar coupling approach is discussed. It is demonstrated, taking the high-spin 73Ge dark matter experiment HDMS as an example, how one can drastically improve the sensitivity of the exclusion curves within the mixed spin-scalar coupling approach, as well as due to a new procedure of background subtraction from the measured spectrum. A general discussion on the information obtained from exclusion curves is given. The necessity of clear WIMP direct detection signatures for a solution of the dark matter problem, is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号