首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI–) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.
Fig. a
?  相似文献   

2.
A new ion generation method, named plasma-spray ionization (PLASI) for direct analysis of liquid streams, such as in continuous infusion experiments or liquid chromatography (LC), is reported. PLASI addresses many of the analytical limitations of electrospray ionization (ESI) and has potential for real time process stream analysis and reaction monitoring under atmospheric conditions in non-ESI friendly scenarios. In PLASI-mass spectrometry (MS), the liquid stream is pneumatically nebulized and partially charged at low voltages; the resultant aerosol is thus entrained with a gaseous plasma plume from a distal glow discharge prior to MS detection. PLASI-MS not only overcomes ESI-MS limitations but also generates simpler mass spectra with minimal adduct and cluster formation. PLASI utilizes the atomization capabilities of an ESI sprayer operated below the ESI threshold to generate gas-phase aerosols that are then ionized by the plasma stream. When operated at or above the ESI threshold, ionization by traditional ESI mechanisms is achieved. The multimodal nature of the technique enables readily switching between plasma and ESI operation. It is expected that PLASI will enable analyzing a wide range of analytes in complex matrices and less-restricted solvent systems, providing more flexibility than that achievable by ESI alone. Figure
?  相似文献   

3.
The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K+ and Ca2+ were used as charge carriers to form multiply-charged metal–peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z? fragment complex, in which the c' and z? fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z? fragment complex, eventually generating c? and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of “proton-removed” precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.
Figure
?  相似文献   

4.
Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.
?  相似文献   

5.
Arrays of chemically etched emitters with individualized sheath gas capillaries were developed to enhance electrospray ionization (ESI) efficiency at subambient pressures. By incorporating the new emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, both ionization efficiency and ion transmission efficiency were significantly increased, providing enhanced sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses of conventional ESI-mass spectrometry (MS) interfaces by placing the emitter in the first reduced pressure region of the instrument. The new ESI emitter array design developed in this study allows individualized sheath gas around each emitter in the array making it possible to generate an array of uniform and stable electrosprays in the subambient pressure (10 to 30 Torr) environment for the first time. The utility of the new emitter arrays was demonstrated by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared under different ESI source and interface configurations including a standard atmospheric pressure single ESI emitter/heated capillary, single emitter/SPIN and multi-emitter/SPIN configurations using an equimolar solution of nine peptides. The highest instrument sensitivity was observed using the multi-emitter/SPIN configuration in which the sensitivity increased with the number of emitters in the array. Over an order of magnitude MS sensitivity improvement was achieved using multi-emitter/SPIN compared with using the standard atmospheric pressure single ESI emitter/heated capillary interface. Graphical Abstract
?  相似文献   

6.
The survivability of Bacillus subtilis spores and vegetative Escherichia coli cells after electrospray from aqueous suspension was tested using mobility experiments at atmospheric pressure. E. coli did not survive electrospray charging and desolvation, but B. subtilis did. Experimental conditions ensured that any surviving bacteria were de-agglomerated, desolvated, and electrically charged. Based on mobility measurements, B. subtilis spores survived even with 2,000–20,000 positive charges. B. subtilis was also found to survive introduction into vacuum after either positive or negative electrospray. Attempts to measure the charge distribution of viable B. subtilis spores using electrostatic deflection in vacuum were inconclusive; however, viable spores with low charge states (less than 42 positive or less than 26 negative charges) were observed.
Graphical Abstract
?  相似文献   

7.
This study presents a detailed experimental investigation of charge isomers of protonated 4-quinolone antibiotics molecules formed during electrospray ionization (ESI) with proposed dissociation mechanisms after collisional activation. Piperazinyl quinolones have been previously shown to exhibit erratic behavior during tandem MS analyses of biological samples, which originated from varying ratios of two isomeric variants formed during ESI. Here, a combination of ESI-collision-induced dissociation (CID), differential ion mobility spectrometry (DMS), high resolution MS, and density functional theory (DFT) was used to investigate the underlying mechanisms of isomer formation and their individual dissociation behaviors. The study focused on ciprofloxacin; major findings were confirmed using structurally related 4-quinolones. DFT calculations showed a reversal of basicity for piperazinyl quinolones between liquid and gas phase. We provide an experimental comparison and theoretical treatment of factors influencing the formation ratio of the charge isomers during ESI, including solvent pH, protic/aprotic nature of solvent, and structural effects such as pK a and proton affinity. The actual dissociation mechanisms of the isomers of the protonated molecules were studied by separating the individual isomers via DMS-MS, which allowed type-specific CID spectra to be recorded. Both primary CID reactions of the two charge isomers originated from the same carboxyl group by charge-remote (CO2 loss) and charge-mediated (H2O loss) fragmentation of the piperazinyl quinolones, depending on whether the proton resides on the more basic keto or the piperazinyl group, followed by a number of secondary dissociation reactions. The proposed mechanisms were supported by calculated energies of precursors, transition states, and products for competing pathways. Graphical Abstract
?  相似文献   

8.
The heating of electrospray ion source under atmospheric pressure is limited to the normal boiling point of the solution. The boiling takes place when the vapor pressure of the liquid at a given temperature equals the ambient pressure. By using a high pressure ESI source, which has been developed previously in our laboratory, a stable electrospray ionization of super-heated aqueous solution is performed up to a solution temperature of 180°C. The ion source is pressurized with pure nitrogen to a maximum pressure of 11 atm, and it is coupled to a commercial mass spectrometer via a custom-made ion transport capillary. A booster pump with variable pumping speed is added to the pumping system to regulate the pressure in the first pumping stage at 1?~?1.3 Torr. High pressure mass spectrometry is performed on several peptides and proteins to demonstrate its application in the temperature-controlled thermally induced denaturation and dissociation. Graphical Abstract
?  相似文献   

9.
A new in-magnetic field electrospray ionization (ESI) and Fourier transform ion cyclotron resonance mass spectrometer has been constructed and evaluated. This system is characterized by the use of multiple concentric cryopanels to achieve ultrahigh vacuum in the ion cyclotron resonance cell region, a probe-mounted internal ESI source, and a novel in-field shutter. Initial experiments demonstrate high resolution mass measurement capability at a field strength of 1 T. Mass resolution of 700,000 has been obtained for the 3+ charge state of Met-Lys-bradykinin (at m/z 440) generated by electrospray ionization. When electron impact ionization was employed, resolution in excess of 9,200,000 was achieved for nitrogen molecular ions (N 2 + ). Isotopic resolution for molecular ions of bovine ubiquitin (MW=8565 µ) also was achieved by using small ion populations.  相似文献   

10.
Gas-phase dissociations were investigated for several peptide ions containing the Gly-Leu* N-terminal motif where Leu* was a modified norleucine residue containing the photolabile diazirine ring. Collisional activation of gas-phase peptide cations resulted in facile N2 elimination that competed with backbone dissociations. A free lysine ammonium group can act as a Brønsted acid to facilitate N2 elimination. This dissociation was accompanied by insertion of a lysine proton in the side chain of the photoleucine residue, as established by deuterium labeling and gas-phase sequencing of the products. Electron structure calculations were used to provide structures and energies of reactants, intermediates, and transition states for Gly-Leu*-Gly-Gly-Lys amide ions that were combined with RRKM calculations of unimolecular rate constants. The calculations indicated that Brønsted acid-catalyzed eliminations were kinetically preferred over direct loss of N2 from the diazirine ring. Mechanisms are proposed to explain the proton-initiated reactions and discuss the reaction products. The non-catalyzed diazirine ring cleavage and N2 loss is proposed as a thermometer dissociation for peptide ion dissociations.
Fig. a
?  相似文献   

11.
In this study, the gas-phase fragmentations of protonated N-benzylbenzaldimines were investigated by electrospray ionization tandem mass spectrometry (ESI-MSn). Upon collisional activation, several characteristic fragment ions are produced and their fragmentation mechanisms are rationalized by electrophilic aromatic substitution accompanied by benzyl cation transfer. (1) For N-(p-methoxybenzylidene)-1-phenylmethanimine, concomitant with a loss of HCN, a product ion at m/z 121 was observed. It is proposed to be generated from electrophilic substitution at the ipso-position by transferring benzyl cation rather than cleavage of the C-N double bond. (2) For N-(m-methoxybenzylidene)-1-phenylmethanimine, a product ion at m/z 209 was obtained, corresponding to the elimination of NH3 carrying two hydrogens from the two aromatic rings respectively. This process can be rationalized by two sequential electrophilic substitutions and cyclodeamination reaction based on the benzyl cation transfer. Deuterium-labeled experiments, density functional theory (DFT) calculation and substituent effect results also corroborate the proposed mechanism. Figure a
?  相似文献   

12.
An efficient ionic liquid with both Brønsted acidic and Lewis basic sites, namely 1,4-dimethyl-1-(4-sulphobutyl)piperazinium hydrogen sulphate (IL1), was synthesised and characterised. IL1 is a “green”, homogeneous and reusable catalyst for: i) the synthesis of pyranopyrazoles (Va-Vj)and benzopyrans (VIa-VIj and VIIa-VIIf) at ambient temperature under solvent-free conditions and ii) the synthesis of amino-2-chromenes (VIIIa-VIIIi and IXa-IXi) and dihyropyrano[c]chromenes (Xa-Xi) at 80 °C under solvent-free conditions. The reactions were rapid with excellent product yields. In addition, the double Brønsted acid, 1,4-dimethyl-1,4-bis(4-sulphobutyl)piperazinium hydrogen sulphate (IL2), was prepared to evaluate the cooperation efficiency of their Brønsted acidic and Lewis basic sites as compared with the double Brønsted acidic sites in IL1.  相似文献   

13.
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH4 +, and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li+ and Cs+, which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH4 + is nearly the same as that with Rb+ and K+, cations with similar GSFE and ionic radii. This indicates that proton transfer from NH4 + to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry.
Figure
?  相似文献   

14.
A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.
Fig. a
?  相似文献   

15.
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer. Figure
?  相似文献   

16.
This work introduces a liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes 12C and 13C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R?>?0.996), repeatability (RSD?<?13.4 %), and reproducibility (RSD?<?10.9 %) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers.
Fig
Liquid chromatography–electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix  相似文献   

17.
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.
Figure
?  相似文献   

18.
Effect of Mobile Phase on Electrospray Ionization Efficiency   总被引:1,自引:0,他引:1  
Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity. Graphical Abstract
?  相似文献   

19.
In this work, 53 selected pesticides of different chemical groups were extracted from Chinese herbal medicines and determined by ultra-high-performance liquid chromatography (UHPLC)–tandem mass spectrometry (MS/MS) using both electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI). Extracts were obtained using the acetonitrile-based quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation technique. Cleanup was performed by dispersive solid-phase extraction using primary secondary amine, graphitized carbon black, and octadecylsilane. Two atmospheric-pressure interfaces, ESI and APCI, were checked and compared. The validation study, including detection limits, linearity, and matrix effects, was conducted on fritillaria, radix ginseng, folium isatidis, semen persicae, and flos lonicerae in multiple reaction monitoring mode. These matrices represent a variety of plants used in traditional Chinese medicine. Fritillaria and radix ginseng were chosen as representatives for roots, folium isatidis was chosen as a representative for leaves, semen persicae was chosen as a representative for seeds, and flos lonicerae was chosen as a representative for flowers. The limits of detection for pesticides were lower in the UHPLC–ESI-MS/MS method than in the UHPLC–APCI-MS/MS method. Matrix effects on the two ionizations were evaluated for the five matrices. Soft signal enhancement in UHPLC–APCI-MS/MS and signal suppression in UHPLC–ESI-MS/MS were observed.
Figure
Overview of UPLC–MS/MS assay for comparing the APCI and ESI interfaces  相似文献   

20.
A numerical study is performed to examine the effect of introducing a swirling desolvation gas flow on the flow transport characteristics in an electrospray and an atmospheric pressure chemical ionization (APCI) system. An ion source having three coaxial tubes is considered: (1) an inner capillary tube to inject the liquid sample, (2) a center coaxial tube to provide a room temperature gas flow to nebulize the liquid, referred to as the nebulizing gas flow, and (3) an outer coaxial tube having a converging exit to supply a high temperature gas for droplet desolvation, referred to as the desolvation gas flow. The results show that a swirling desolvation gas flow reduces the dispersion of the nebulizing gas and suppresses turbulent diffusion. The effect of swirling desolvation flow on the trajectory of a range of droplet sizes emitted from a source is also considered. Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号