首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total computer-aided simulation of the structure and current-generation processes in the cathodic active layer of a fuel cell with solid polymer electrolyte is carried out. Not only the transport structure of the active layer but also the structure of support grains (agglomerates of carbon particles with platinum-covered surface) are modeled. The process of active layer functioning under potentiostatic conditions is studied. It is demonstrated for the first time how the moisture exchange in the pores of support grains affects the cathode overall characteristics. The time variations of the overall current, the average temperature of the active layer, and the total degree of water-flooding of support-grain pores within the active layer are calculated by numerical methods. It is shown that for the fuel cell voltage of 0.6 V and its working temperature of 80°C, the flooding process dominates over the process of drying of pores in support grains. In 10–15 s, all support-grain pores turn out to be entirely filled with water. Then they begin functioning not in the kinetic mode (in the moment of switching-on the current, the Knudsen diffusion of oxygen in the support grains is observed) but in the inner-diffusion mode. As a result, the overall cathodic current decreases from its initial value of 4.323 A/cm2 to its final value of 0.526 A/cm2 and the active layer temperature decreases from the initial value of 102°C to the final value of 82.5°C. The overall current transient is studied also experimentally, the qualitative coincidence of theoretical and experimental data is demonstrated.  相似文献   

2.
The Nb-doped TiO2 nanostructure (Nb-TiO2) was prepared as a support of metal catalyst in polymer electrolyte membrane fuel cells. Using the Nb-TiO2 nanostructure support, we prepared the Nb-TiO2 supported catalyst. The Nb-TiO2 supported Pt catalyst (Pt/Nb-TiO2) showed the well dispersion of Pt catalysts (∼3 nm) on the Nb-TiO2 nanostructure supports (∼10 nm). The Pt/Nb-TiO2 showed an excellent catalytic activity for oxygen reduction compared with carbon supported Pt cathode catalyst. The enhanced catalytic activity of Pt/Nb-TiO2 in electrochemical half cell measurement may be mainly due to well dispersion of Pt nanoparticles on Nb-TiO2 nanosized supports. In addition, from XANES spectra of Pt L edge obtained with the supported catalysts, the improved catalytic activity of Pt/Nb-TiO2 for oxygen reduction may be caused by an interaction between oxide support and metal catalyst.  相似文献   

3.
A computer-aided simulation of the structure of the active layer of the cathode of a fuel cell with a solid polymer electrolyte (Nafion) is performed under the assumption about equidimensionalness of dimensions of grains of the substrate (with platinum crystallites in them) and grains (agglomerates of molecules) of Nafion. It is analyzed how the Nafion concentration affects principal parameters, which include the specific surface area, in the vicinity of which electrochemical process goes on; the effective ionic electroconductivity, and the effective diffusion coefficient of a gas. It is demonstrated how one can determine the Nafion concentration at which the overall current takes on a maximum value. Dependences of the optimum value of the overall current and the thickness of the active layer and the weight of platinum, which correspond to it, on the Nafion concentration are calculated. It is demonstrated that there in principle cannot exist one individual optimum concentration of Nafion, which is suitable for all techniques used for the preparation of the active layer. The mutual relationship between values of the effective diffusion coefficient of a gas and the effective ionic electroconductivity of Nafion determines the value of the optimum of the Nafion concentration.  相似文献   

4.
Sulfonated graphene oxide paper was fabricated by vacuum filtration of a colloidal solution of sulfonated graphite oxide. Layer by layer assembly of graphene oxide nano sheets interconnects the conduction paths and therefore sulfonated graphene oxide exhibits good proton conductivity and fuel cell performance.  相似文献   

5.
本文根据聚合物电解质膜燃料电池操作温度、使用的电解质和燃料的不同,将其分为高温质子交换膜燃料电池、低温质子换膜燃料电池、直接甲醇燃料电池和阴离子交换膜燃料电池,综述了它们所用电解质膜的最新进展.第一部分简要介绍了这4种燃料电池的优点和不足.第二部分首先介绍了Nafion膜的结构模型,并对平行柱状纳米水通道模型在介观尺度上进行了修正;接着分别对应用于不同燃料电池的改性膜的改性思路作了分析;最后讨论了用于不同燃料电池的新型质子交换膜的研究,同时列举了性能突出的改性膜和新型质子交换膜.第三部分介绍了阴离子交换膜的研究现状.第四部分对未来聚合物电解质膜的研究作了展望.  相似文献   

6.
This study shows the preparation of a TiO_2 coated Pt/C(TiO_2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO_2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO_2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO_2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO_2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO_2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO_2 protective layer used to prevent the degradation of Pt/C is discussed.  相似文献   

7.
On the history of solid electrolyte fuel cells   总被引:1,自引:0,他引:1  
The path to the discovery of galvanic solid electrolyte gas cells (J.-M. Gaugain 1853) and to the first industrially produced solid electrolyte gas cells (Nernst lamps 1897) is described. The development of the fundamentals of solid electrolyte fuel cells started with the work of Haber 1905, Schottky 1935, Baur 1937 and Wagner 1943. Extensive work in the field of solid oxide fuel cells (SOFCs) was done in the fifties by Peters and Möbius. After 1960, a rapidly growing number of scientists worked on the different problems of SOFCs, and by 1970 the basis was established on which the broad technologically orientated development of SOFCs proceeds today.  相似文献   

8.
9.
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mg~(Pt) at 1 A/cm~2,which is 11.6%greater than that of the conventional Pt/C electrode.  相似文献   

10.
Journal of Solid State Electrochemistry - In this work, anode-supported solid oxide fuel cells (SOFC) were tested with a yttria-stabilized zirconia (YSZ) (8 mol%...  相似文献   

11.
The active layer of the cathode of a fuel cell with polymer electrolyte (Nafion) is considered. The optimum carbon support structure is constructed using computer simulation: its carbon “skeleton” possesses the maximum outer surface area and provides electronic conductivity of the grains, support cubes, along the three coordinate axes. Nafion is absent in the support grain, so that the grain is capable of participating only in the transport of oxygen molecules, it possesses no proton conductivity. An estimate of all parameters of an optimum support grain is provided; in particular, the value of the effective Knudsen diffusion coefficient of oxygen is established. After this, effective proton conductivity and effective Knudsen diffusion coefficient are calculated already on the whole active layer scale, according to the model of equally sized cube grains of three types. In conclusion, the overall current in the active layer of a cathode with a polymer electrolyte was calculated for the percolation cluster consisting only of Nafion grains and the Knudsen diffusion of oxygen created only by a combined gas percolation cluster consisting of void grains and all support grains. The overall current value for t = 80°C and pressure of p* = 101 kPa proved to be low, hundreds of mA/cm2. The current value can apparently be increased to several A/cm2 if the support grains are developed that would simultaneously possess both proton conductivity and ability to sustain oxygen diffusion.  相似文献   

12.
Partially fluorinated proton exchange materials were synthesised by pre-irradiation grafting of styrene into poly(vinylidene fluoride) films with subsequent sulfonation. The grafted and sulfonated membranes, PVDF-g-PSSA membranes, have been studied with respect to water uptake, ion and water clustering, ion conductivity and water diffusion coefficients. Water associates with the membranes in three different ways: bound non-freezable water, freezable bound water and freezable free water. The proton conductivity of the membrane is strongly dependent on the hydration, it decreases more rapidly than the water self diffusion with decreasing water content. Ion clusters with a Bragg distance of 25 Å form the conducting channels in the membranes.  相似文献   

13.
For the first time a fluorinated polyoxadiazole doped with phosphoric acid as a proton-conducting membrane for operation at temperatures above 100 °C and low humidities for fuel cells has been reported. Fluorinated polyoxadiazole with remarkable chemical stability was synthesized. No changes in the molecular weight (about 200,000 g mol−1) can be observed when the polymer is exposed for 19 days to mixtures of sulfuric acid and oleum. Protonated membranes with low doping level (0.34 mol of phosphoric acid per polyoxadiazole unit, 11.6 wt.% H3PO4) had proton conductivity at 120 °C and RH = 100% in the order of magnitude of 10−2 S cm−1. When experiments are conducted at lower external humidity, proton conductivity values drop an order of magnitude. However still a high value of proton conductivity (6 × 10−3 S cm−1) was obtained at 150 °C and with relative humidity of 1%. In an effort to increase polymer doping, nanocomposite with sulfonated silica containing oligomeric fluorinated-based oxadiazole segments has also been prepared. With the addition of functionalized silica not only doping level but also water uptake increased. For the nanocomposite membranes prepared with the functionalized silica higher proton conductivity in all range of temperature up to 120 °C and RH = 100% (in the order of magnitude of 10−3 S cm−1) was observed when compared to the plain membrane (in the order of magnitude of 10−5 S cm−1).  相似文献   

14.
Palladium-based nanostructured electrocatalysts on the Vulcan XC-72 carbon support for fuel cells with solid polymer electrolyte are synthesized and studied. In particular, electrochemical studies of the synthesized catalysts are carried out and membrane-electrode assemblies are assembled on their basis and tested. The test results indicate that platinum can be replaced with palladium in the hydrogen electrode of the fuel cells.  相似文献   

15.
The study elementarily investigated the effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. Four single cells were fabricated with different cathode structures, and the total cathode thickness was 15, 55, 85, and 85 μm for cell-A, cell-B, cell-C, and cell-D, respectively. The cell-A, cell-B, and cell-D included only one cathode layer, which was fabricated by ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} (LBSM) electrode material. The cathode of the cell-C was composed of a ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d - ( \textBi0.7 \textEr0.3 \textO1.5 ) \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} - \left( {{\text{Bi}}_{0.7} {\text{Er}}_{0.3} {\text{O}}_{1.5} } \right) (LBSM–ESB) cathode functional layer and a LBSM cathode layer. Different cathode structures leaded to dissimilar polarization character for the four cells. At 750°C, the total polarization resistance (R p) of the cell-A was 1.11, 0.41 and 0.53 Ω cm2 at the current of 0, 400, and 800 mA, respectively, and that of the cell-B was 1.10, 0.39, and 0.23 Ω cm2 at the current of 0, 400, and 800 mA, respectively. For cell-C and cell-D, their polarization character was similar to that of the cell-B and R p also decreased with the increase of the current. The maximum power density was 0.81, 1.01, 0.79, and 0.43 W cm−2 at 750°C for cell-D, cell-C, cell-B, and cell-A, respectively. The results demonstrated that cathode structures evidently influenced the electrochemical performance of anode-supported solid oxide fuel cells.  相似文献   

16.
Highly disperse platinum film were vacuum-plasma-deposited onto titanium foil and gas-diffusion layers. The platinum deposits have complicated structure. By measuring hydrogen desorption peaks, the catalysts’ active specific surface area was determined and the roughness factor calculated. The electrochemical activity of the electrodes on gas-diffusion layers in the oxygen reduction and hydrogen oxidation reactions was determined. It was shown that the catalysts’ specific activity depends on the platinum content and the Nafion-ionomer additive. The high-activity electrodes were tested in Membrane Electrode Assemblies of low-temperature fuel cells.  相似文献   

17.
A computer model of the active layer of the cathode of a hydrogen-oxygen fuel cell with a solid polymer electrolyte is studied. The active mass of the electrode consists of equidimensional grains of the substrate (agglomerates of carbon particles with platinum particles embedded in them) and a solid polymer electrolyte (Nafion). The flooding by water can be experienced by both the pores in the substrate grains, which facilitate the oxygen penetration into the active layer of the electrode, and the voids between the grains. All possible versions of the flooding of these pores by water are considered. A calculation of the optimum, at a given polarization of the electrode, value of electrochemical activity, the thickness of the active layer, and the weight of platinum is performed. The major parameters of the system are the concentrations of grains of the substrate and solid polymer electrolyte, the size of these grains, the platinum concentration in the substrate grains, the average diameter of pores in the substrate grains, and the polarization of electrodes. The ultimate aim of the work is to estimate how the flooding of pores of the active layer of the cathode by water affects the magnitude of the optimum current, the effective thickness of the active layer, and the weight of platinum.Translated from Elektrokhimiya, Vol. 41, No. 1, 2005, pp. 35–47.Original Russian Text Copyright © 2005 by Chirkov, Rostokin.  相似文献   

18.
Water management is one of the critical issues of polymer electrolyte membrane fuel cells because dehydration of a membrane increases membrane-resistance whereas excessive water flooding at the cathode impedes the gaseous diffusion of oxygen to reaction sites at the wetted catalyst surface. In this study, we have developed an asymmetric polymer electrolyte membrane that facilitates water management. The structural modification of the membrane strongly affected water management, due primarily to the fact that water must move through the membrane during fuel cell operation. The asymmetric membrane improved transport of water from the cathode to the anode when the hydrophilic side of the membrane located to the cathode, thereby enhancing overall fuel cell performance under both fully humidified and non-humidified conditions.  相似文献   

19.
Method for the modification of proton-conducting Nafion membranes by using a zirconium citrate one-substituted salt, aimed at the improving of characteristics of membranes for polymer-electrolyte-based fuel cells, is suggested. In the method, the membrane is impregnated first with zirconyl chloride and then with citric acid; an insoluble sol is thus formed in the membrane pores. The impregnation is carried out in ultrasound bath, using an isopropyl alcohol-water solvent, to make it more rapid and uniform. It is shown that the impregnation lowers the real component of the membrane impedance. The discharge characteristics of the impregnated and nonimpregnated membranes are compared.  相似文献   

20.
A new type of the cathodic active layer structure for a polymer electrolyte fuel cell is proposed. This structure is based on combined grains and gas pores. Combined grains represent nonporous agglomerates of carbon black particles (catalyst carrier) and Nafion molecules. This type of cathodes has the following advantages: (1) in combined grains, complete utilization of the catalyst occurs, (2) limitations on the oxygen delivery into the active layer are almost totally lifted, and (3) the danger that pores will be flooded with evolved moisture is actually released. The overall characteristics of cathodes with combined grains are calculated. The advantages of such oxygen or air cathodes are demonstrated, namely, not only their enhanced power density but also the lower index of platinum consumption, i.e., the platinum amount per kW of electric energy produced in the membrane-electrode block, as compared with conventional cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号