首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents examples of mixed-ligand Co(II), Cu(II), Ni(II) and Mn(II) complexes, with a distorted octahedral coordination geometry, with 2,2′-dipyridyl or 1,10-phenanthroline and phosphortriamide ligands. The complexes of the general type ML2·Lig (where M = Co(II), Cu(II), Ni(II), Mn(II); L = {Cl3C(O)NP(O)R2} (R = NHBz, NHCH2CHCH2, NEt2); Lig = 2,2′-dipyridyl or 1,10-phenanthroline) were synthesised and characterised by means of X-ray diffraction, IR and UV–Vis spectroscopy. The phosphortriamide ligands are coordinated via oxygen atoms of phosphoryl and carbonyl groups involved in six-membered metal cycles. The additional ligands 2,2′-dipyridyl or 1,10-phenanthroline are coordinated to the central atom, forming five-membered cycles.  相似文献   

2.
Using the principle of crystal engineering, three new silver metal–organic coordination polymers, [Ag2(L1)2(L2)]·2H2O (1), [Ag2(L1)2(L3)]·H2O (2), [Ag2(L1)2(L4)]·2H2O (3) (L1 = 2-aminopyrimidine, L2 = oxalate anion, L3 = glutarate anion and L4 = 1,4-naphthalenedicarboxylate anion) have been synthesized by solution phase reactions of silver nitrate with various dicarboxylic acids and cooperative heterocyclic 2-aminopyrimidine ligand under the ammoniacal conditions. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. In complex 1, L1 ligands are coordinated to Ag(I) metal centers in rare tridentate fashions, forming one-dimensional (1-D) ladder-like structure, which is interlinked by L2 anions to generate 2-D pleated molecular sheet. Complex 2 displays an interesting two-dimensional (2-D) tongue-and-groove structure containing a new kind of “T-shaped” unit. Meanwhile, each of 2-D bilayers is interlocked by four adjacent identical motifs to form three-dimensional (3-D) 5-fold interpenetrating conformation with weak Ag···Ag interactions. In complex 3, L1 ligands are coordinated to the Ag(I) ions to form 1-D polymeric chain. And L4 anions, acting as bridging linkers through corresponding μ2-carboxylates, link a pair of Ag(I) atoms from adjacent chains to yield 3-D supramolecular network. The structures of complexes 13 which span from 2-D to 3-D networks suggest that dicarboxylate anions play important role in the formation of such coordination architectures.  相似文献   

3.
4.
Three new linear trinuclear nickel(II) complexes, [Ni3(salpen)2(OAc)2(H2O)2]·4H2O (1) (OAc = acetate, CH3COO), [Ni3(salpen)2(OBz)2] (2) (OBz = benzoate, PhCOO) and [Ni3(salpen)2(OCn)2(CH3CN)2] (4) (OCn = cinnamate, PhCHCHCOO), H2salpen = tetradentate ligand, N,N′-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni3(salpen)2(OPh)2(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the synsyn bridging bidentate mode of the carboxylate group remain the same in complexes 14, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2–300 K) magnetic susceptibility measurements show that complexes 14 are antiferromagnetically coupled (J = −3.2(1), −4.6(1), −3.2(1) and −2.8(1) cm−1 in 14, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 14 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm−1 for 14, respectively). The highest D value of +14.2(2) and +9.8(2) cm−1 for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3.  相似文献   

5.
The equilibrium internuclear separations, harmonic frequencies and potential energy curves of the AsH(X3Σ) radical have been calculated using the coupled-cluster singles–doubles–approximate-triples [CCSD(T)] theory in combination with the series of correlation-consistent basis sets in the valence range. The potential energy curves are all fitted to the Murrell–Sorbie function, which are used to reproduce the spectroscopic parameters such as De, ωeχe, αe, Be and D0. The present D0, De, Re, ωe, ωeχe, αe and Be obtained at the cc-pV5Z basis set are of 2.8004 eV, 2.9351 eV, 0.15137 nm, 2194.341 cm1, 43.1235 cm1, 0.2031 cm1 and 7.3980 cm1, respectively, which almost perfectly conform to the measurements. With the potential obtained at the UCCSD(T)/cc-pV5Z level of theory, a total of 18 vibrational states is predicted when the rotational quantum number J is set to equal zero (J = 0) by numerically solving the radial Schrödinger equation of nuclear motion. The complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0 for the first time, which are in excellent agreement with the experiments.  相似文献   

6.
The reaction of (R-Ind)2Ni (Ind = C9H7, indenyl) with an equivalent of a bulky aryl-substituted imidazolium salt in CH2Cl2/THF at 45 °C results in the corresponding N-heterocyclic carbene (NHC) indenylnickel(II) chloride of the type (R-Ind)Ni(L)Cl [R = 1-H, L = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr), 1; R = 1-Me, L = IPr, 2] in high yield. Complexes 1 and 2 were characterized by elemental analysis, NMR spectroscopy and X-ray crystallography. The resulted NHC indenylnickel(II) complexes are capable of polymerizing styrene in the presence of NaBPh4 to give atactic polystyrene with Mn values in the range of 104. The present studies show a close relationship between the structure and catalytic activity of the NHC indenylnickel(II) halides (including the previously reported indenylnickel(II) halides bearing alkyl-substituted NHC ligands), and complex 2 shows the highest catalytic activity. In comparison with its phosphine analogue (1-Me-Ind)Ni(PPh3)Cl, complex 2 shows significant improvements in stability and catalytic performance.  相似文献   

7.
Infrared spectra of the title compounds with kröhnkite-type infinite octahedral–tetrahedral chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd), are presented in the regions of the uncoupled O–D stretching modes of matrix-isolated HDO molecules (isotopically dilute samples) and water librations. The strengths of the hydrogen bonds are discussed in terms of the respective OwO bond distances, the Me–water interactions (synergetic effect), the proton acceptor capability of the chromate oxygen atoms as deduced from Brown's bond valence sum of the oxygen atoms. The spectroscopic experiments reveal that hydrogen bonds of medium strength are formed in the chromates. The hydrogen bond strengths decrease in the order Cd > Zn > Ni > Co in agreement with the decreasing covalency of the respective Me–OH2 bonds in the same order, i.e. decreasing acidity of the water molecules. The infrared band positions corresponding to the water librations confirm the claim that the hydrogen bonds in K2Cd(CrO4)2·2H2O are stronger than those formed in K2Mg(CrO4)2·2H2O on one hand, and on the other—the hydrogen bonds in K2Ni(CrO4)2·2H2O are stronger than those in K2Co(CrO4)2·2H2O.  相似文献   

8.
A new ferrocene-containing dicarboxylate ligand, L = 5-ferrocene-1,3-benzenedicarboxylic acid, has been prepared. Self-assembly of L, M(II) salts (M = Co and Zn) and chelating ligands dpa or phen (dpa = 2,2′-dipyridylamine and phen = 1,10-phen) gave rise to four new coordination polymers {[Co(L)(dpa)] · 2MeOH}n (1), {[Zn(L)(dpa)] · 2MeOH}n (2), {[Co(L)(phen)(H2O)] · MeOH} (3), [Zn(L)(phen)(H2O)] · MeOH (4). The isostructural complexes 1 and 2 possess 1D helical chain structures with 21 screw axes along the b-direction, and the right- and left-handed helical chains are alternate arrayed into 2D layer structures through hydrogen-bonding interactions; while isostructural complexes 3 and 4 are 1D linear chain structures with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. A structural comparison of complexes 14 demonstrated that the characteristics of subsidiary ligands and slight difference in coordination models of L play very important role in the construction of the complexes. In addition, the redox properties of complexes 14, as well as the magnetic properties of complexes 1 and 3 are also investigated.  相似文献   

9.
Chiral imidazole hydrolytic metalloenzyme models with characteristics of chiral centers directly link to imidazole N-atoms and varieties in both alkyl chain length and number of alkyl chains, have been synthesised and investigated for enantioselective hydrolysis of Boc-α-amino acid esters. The result indicates that both hydrolysis rates and enantioselectivities are increased with increases in the alkyl chain length and the number of the alkyl chains in the lipophilic chiral imidazole-type surfactants in many cases. The lipophilic chiral imidazole 4d ((S)-1-hexadecoxy-2-(1-imidazolyl)-propane), which has one long alkyl chain, shows higher hydrolysis rate and enantioselectivity (kD = 132.5 × 10−5, kD/kL = 5.38), 5d ((S)-1,5-dihexadecoxy-2-(1-imidazolyl)-pentane), which has two long alkyl chains, shows the highest hydrolysis rate and enantioselectivity (kD = 201.5 × 10−5, kD/kL = 11.72). Additionally, the effects of the metals, the additives, the solvents and the substrates on the hydrolysis rates and enantioselectivities are examined.  相似文献   

10.
A novel bridged binuclear Cu(II) complex with mixed ligands, di-μ-(2-aminopyridine(N,N′))-bis[(2,6-pyridinedicarboxylate)aquacopper(II)] tetrahydrate, formulated as [Cu(μ-ap)(dipic)(H2O)]2·4H2O (1) (dipic = 2,6-pyridinedicarboxylate, ap = 2-aminopyridine), has been synthesized and characterized by elemental, spectral (IR and UV–Vis.), thermal analysis, magnetic measurements and single crystal X-ray diffraction analysis. The central Cu(II) ion resides on a centre of symmetry in a distorted square-pyramid coordination environment comprising of two N atoms, one from dipic and one from the ap ring, two carboxylate O atoms from dipic, and one O atom from water. Intermolecular N–HO and O–HO hydrogen bonds and π–π stacking interactions seem to be effective in the stabilization of the crystal structure. The free ligands and the complex were also evaluated for their antimicrobial and radical scavenging activities (DPPH = 1,1-diphenyl-2-picrylhydrazyl hydrate) using in vitro microdilution methods. Antimicrobial screening of the free ligands and their complex showed that the free ligands and the complex possess antifungal activity against Candida sp.  相似文献   

11.
The hydrothermal reaction of In3+ and 1,2,4-benzenetricarboxylic acid with the presence of piperazine leads to the generation of a novel 3D porous coordination polymer, [H3O][In2(btc)(bdc)(OH)2]·5.5H2O (1), (btc=1,2,4-benzenetricarboxylate, bdc=1,4-benzenedicarboxylate). Compound 1 crystallizes in orthorhombic space group Pbca with a=16.216(7) Å, b=13.437(6) Å, c=31.277(14) Å, and Z=8. It is interesting to find that the in-situ decarboxylation reaction of 1,2,4-benzenetricarboxylate (btc) partially transformed into 1,4-benzenedicarboxylate (bdc) occurs. The 16 indium(III) centers were linked by four btc, four bdc and two μ2-OH ligands to form a box-girder. The adjacent box-girders are further connected by the bdc and btc ligands to generate a novel porous metal–organic framework containing nanotubular open channel with a cross-section of approximately 11.5×11.3 Å2. The micropores are occupied by lattice water molecules, and the solvent-accessible volume of the unit cell was estimated to be 3658.6 Å3, which is approximately 53.7% of the unit-cell volume (6815.4 Å3).  相似文献   

12.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

13.
The new salt, tetra-n-butylammonium bis(benzene-1,2-dithiolato(2−)-κ2S,S′)platinate(III), [NBu4][Pt(C6H4S2)2] (1), has been synthesized in ethanol/water, and fully characterized by single crystal X-ray structure determination. The central platinum in the complex ion [Pt(bdt)2] is tetracoordinated by the S atoms of the bdt2− ligands (bdt2− is benzene-1,2-dithiolate) in a square-planar geometry. The well-resolved frozen solution EPR spectrum exhibits rhombic symmetry. The room temperature effective magnetic moment (μeff = 1.80 Bohr magneton) is in line with this spectrum and strongly supports the Pt(III) oxidation state in 1. This observation is in excellent agreement with previous results reported on closely related Ni(III), Pd(III) and Pt(III) species.  相似文献   

14.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

15.
The use of salicylaldehyde oxime (H2salox) in manganese(III) carboxylate chemistry has yielded new members of the family of hexanuclear compounds presenting the [Mn63-O)22-OR)2]12+ core, complexes [MnIII63-O)2(O2CPh)2(salox)6(L1)2(L2)2] (L1 = py, L2 = H2O (1); L1 = Me2CO, L2 = H2O (2); L1 = L2 = MeOH (3)). Addition of NaOMe to the acetonitrile reaction mixture, afforded the 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(MeCN)]n (4), whereas addition of NaClO4 to the acetone reaction mixture afforded an analogous 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(Me2CO)]n (5). The structures of 1–3 present the [Mn63-O)22-OR)2]12+ core and can be described as two [Mn33-O)]7+ triangular subunits linked by two μ2-oximato oxygen atoms of the salox2− ligands, which show the less common μ32OO′:κN coordination mode. The benzoato ligands are coordinated through the usual syn,syn2OO′ mode. The 1D polymeric structures of 4 and 5 consist of alternating [Mn33-O)]7+ subunits and Na+ atoms linked through two μ32OO′:κN and one μ42O2O′:κN salox2− ligands as well as one syn,anti2OO′ benzoato ligand. DC and AC magnetic susceptibility studies on 1 revealed the stabilization of an S = 4 ground state, and indications of single-molecule magnetism behavior, whereas the DC experimental data from polycrystalline sample of 5 are indicative of antiferromagnetic interactions within the [Mn3] subunit. Solid state 1H NMR data of 1 were used to probe the spin-lattice relaxation of the system.  相似文献   

16.
Two new coordination complexes, viz. [Co(tmb)2(4,4′-bpy)2(H2O)2](Htmb)2 (1) and {[Ni(tmb)2(μ-4,4′-bpy)2(H2O)2](4,4′-bpy)}n (2), have been hydrothermally synthesized by reaction of the corresponding metal acetate with 2,4,6-trimethylbenzoic acid (Htmb) and 4,4′-bipyridyl (4,4′-bpy). X-ray single-crystal diffraction suggests that complex 1 represents a discrete mononuclear species in which the central metal ion is coordinated by the terminal carboxylate moiety and the 4,4′-bipyridyl ligand. The crystal structure of complex 2 reveals a 1D chain coordination polymer in which the Ni(II) ions are connected by the bridging 4,4′-bipyridyl ligands. In both cases, the coordination arrays are further extended via hydrogen bonding interactions to generate 3D supramolecular networks. Complexes 1 and 2 have also been characterized by spectroscopic (IR and UV/Vis), thermal (TGA) and magnetic susceptibility measurements. In addition, both complexes exhibit antimicrobial activity.  相似文献   

17.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

18.
We have prepared and characterized a series of substituted imidazole ligands namely dmmppi, dmmpfpi, dmdmppi and dmdmpfpi. These compounds will readily undergo cyclometalation with iridium trichloride and form di-irrido and the six coordinated iridium(III) dopants of the substituted imidazole ligands. They emit green colour both in solid and in solution phase. The peak emission wavelength of the dopants (λmax = 428–497 nm) can be finely tuned depending upon the electronic properties of the phenyl, fluorophyenyl, methoxy phenyl and dimethoxyphenyl substituents as well as their positions in the imidazole ring. These iridium complexes namely Ir(dmmppi)2(pic) 1a, Ir(dmmpfpi)2(pic) 1b, Ir(dmdmppi)2(pic) 1c and Ir(dmdmpfpi)2(pic) 1d were characterized by 1H NMR, MS and elemental analysis. All these iridium complexes 1a1d show unusual high HOMO levels (EHOMO = 5.21–5.41 eV) and high phosphorescence. These complexes emit green light with exceedingly high efficiency.  相似文献   

19.
Fourteen new organic molecules A1A4, B1B5, C1C4 and D and a series of transition metal(II) complexes (Ni1Ni9 and Pd1Pd2b) were synthesized and studied in order to characterize the hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands (A1A4 = 2-R2-6-(4,5-diphenyl-1R1-imidazol-2-yl)pyridines, R1 = H or CH3, R2 = H or CH3; B1B5 = 1-R2-2-(pyridin-2-yl)-1R1-phenanthro[9,10-d]imidazoles/oxazoles, R1 = H or CH3, R2 = H or CH3; C1C4 = 2-(6-R2-pyridin-2-yl)-1H-imidazo/oxazo[4,5-f][1,10]phenanthrolines, R2 = H or CH3; D = 2-mesityl-1H-imidazo[4,5-f][1,10]phenanthroline). They were also used to study the substituent effects on the donor strengths as well as the coordination chemistries of the imidazole/oxazole fragments of the hemilabile ligands.All the observed protonation–deprotonation processes found within pH 1–14 media pertain to the imidazole or oxazole rings rather than the pyridyl Lewis bases. The donor characteristics of the imidazole/oxazole ring can be estimated by spectroscopic methods regardless of the presence of other strong N donor fragments. The oxazoles possessed notably lower donor strengths than the imidazoles. The electron-withdrawing influence and capacity to hinder the azole base donor strength of 4,5-azole substituents were found to be in the order phenanthrenyl (B series) > 4,5-diphenyl (A series) > phenanthrolinyl (C series). An X-ray structure of Ni5b gave evidence for solvent induced ligand reconstitution while the structure of Pd2b provided evidence for solvent induced metal–ligand bond disconnection.Interestingly, alkylation of 1H-imidazoles did not necessarily produce the anticipated push of electron density to the donor nitrogen. Furthermore, substituents on the 4,5-carbons of the azole ring were more important for tuning donor strength of the azole base. DFT calculations were employed to investigate the observed trends. It is believed that the information provided on substituent effects and trends in this family of ligands will be useful in the rational design and synthesis of desired azole-containing chelate ligands, tuning of donor properties and application of this family of ligands in inorganic architectural designs, template-directed coordination polymer preparations, mixed-ligand inorganic self-assemblies, etc.  相似文献   

20.
Four new organotin(IV) carboxylates, [Bu2SnL2] (1), [Et2SnL2] (2), [Bu3SnL]n (3), [Me3SnL]n (4), where L = 4-nitrophenylethanoates, were synthesized and characterized by elemental analysis, FT-IR and multinuclear NMR (1H and 13C). Spectroscopic results authenticated the coordination of ligand to the organotin moiety via COO group while X-ray single crystal analysis revealed bidentate chelating mode of coordination of ligand in complex 2 and a bridging behavior in complexes 3 and 4. Cyclic voltammetric (CV) technique was used to evaluate the electrochemical, kinetic and thermodynamic parameters of complexes 1-4, interacting with DNA. The linearity of the plots between the peak current (I) and the square root of the scan rate (ν1/2) indicated the electrochemical processes to be diffusion controlled. The diffusion coefficients of the free (Df) and DNA bound forms (Db), standard rate constants (ks) and charge transfer coefficients (α) were determined by the application of Randle–Sevcik, Nicholson and Kochi equations. Furthermore, the binding constants evaluated from voltammetric data revealed the following increasing order of binding strength: 2 < 1 < 4 < 3. For 1 and 2, the activity against prostate cancer cell lines (PC-3) was found consistent with the order obtained from voltammetric behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号