首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

2.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

3.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

4.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

5.
Binuclear and tetranuclear copper(II) complexes are of interest because of their structural, magnetic and photoluminescence properties. Of the several important configurations of tetranuclear copper(II) complexes, there are limited reports on the crystal structures and solid‐state photoluminescence properties of `stepped' tetranuclear copper(II) complexes. A new CuII complex, namely bis{μ3‐3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolato}bis{μ2‐3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolato}tetracopper(II), [Cu4(C11H13NO3)4], has been synthesized and characterized using elemental analysis, FT–IR, solid‐state UV–Vis spectroscopy and single‐crystal X‐ray diffraction. The crystal structure determination shows that the complex is a stepped tetranuclear structure consisting of two dinuclear [Cu2(L )2] units {L is 3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolate}. The two terminal CuII atoms are four‐coordinated in square‐planar environments, while the two central CuII atoms are five‐coordinated in square‐pyramidal environments. The solid‐state photoluminescence properties of both the complex and 3‐[(2‐hydroxy‐4‐methoxybenzylidene)amino]propanol (H2L ) have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong blue emission at 469 nm and H2L displays a green emission at 515 nm.  相似文献   

6.
Three new coordination polymers, namely, [CuL0.5] ( 1 ), [Co(H2L)(H2O)2][H2O] ( 2 ), and [(CdCl)0.5Cd0.25(H2L)0.5] ( 3 ) were synthesized under hydrothermal conditions from the corresponding CuII, CoII, and CdII salts with a multidentate ligand of 2,2′,2′′,2′′′‐[2,3,5,6‐tetramethyl‐1,4‐phenylenebis(methylenenitrilo)]tetraacetic acid (H4L). The complexes were characterized by single‐crystal X‐ray diffraction, IR, thermogravimetric, and elemental analyses. Complex 1 crystallizes in the orthorhombic space group Pbca and has a three‐dimensional architecture with infinite two‐dimensional networks linked together by weak Cu–O interactions. Complex 2 crystallizes in the monoclinic space group P2(1) and displays a 2D network. Complex 3 crystallizes in the tetragonal space group P4(2)/ncm and exhibits an infinite 3D architecture that has unusual [Cd2(CO2)4Cl2] dinuclear paddle‐wheel units and [Cd(CO2)4] dodecahedron units. The results showed that the coordination arrangement of central metal atoms and the conformation and coordination mode of organic ligands play an important role in determining the structure of the complexes. The luminescence property of complex 3 was studied in the solid state at room temperature.  相似文献   

7.
The dioxygen activation of a series of CuICuICuI complexes based on the ligands ( L ) 3,3′‐(1,4‐diazepane‐ 1,4‐diyl)bis(1‐{[2‐(dimethylamino)ethyl](methyl)amino}propan‐2‐ol) ( 7‐Me ) or 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis(1‐{[2‐(diethylamino)ethyl](ethyl)amino}propan‐2‐ol) ( 7‐Et ) forms an intermediate capable of mediating facile O‐atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7‐Me , 7‐Et , and 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis[1‐(4‐methylpiperazin‐1‐yl)propan‐2‐ol] ( 7‐N‐Meppz ) with dioxygen at ?80, ?55, and ?35 °C in propionitrile (EtCN) by UV‐visible, 77 K EPR, and X‐ray absorption spectroscopy, and 7‐N‐Meppz and 7‐Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both ?80 and ?55 °C, the mixing of the starting [CuICuICuI( L )]1+ complex ( 1 ) with O2‐saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ ( 2 ) and the blue [CuIICuII(μ‐O)CuII( L )]2+ species ( 3 ). These observations are consistent with the initial formation of [CuIICuII(μ‐O)2CuIII( L )]1+ ( 4 ), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [CuIICuICuI( L )]2+ ( 5 ) to form the green dioxygen adduct 2 . Assignment of 2 to [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ is consistent with its reactivity with water to give H2O2 and the blue species 3 , as well as its propensity to be photoreduced in the X‐ray beam during X‐ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O‐atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

8.
The title compound, poly[diammine­hexa‐μ‐cyano‐di­copper(I)­copper(II)­mercury(II)], [Cu3Hg(CN)6(NH3)2]n, has a novel threefold‐inter­penetrating structure of three‐dimensional frameworks. This three‐dimensional framework consists of two‐dimensional network Cu3(CN)4(NH3)2 complexes and rod‐like Hg(CN)2 complexes. The two‐dimensional network complex contains trigonal–planar CuI (site symmetry m) and octa­hedral CuII (site symmetry 2/m) in a 2:1 ratio. Two types of cyanide group form bridges between three coordination sites of CuI and two equatorial sites of CuII to form a two‐dimensional structure with large hexa­gonal windows. One type of CN group is disordered across a center of inversion, while the other resides on the mirror plane. Two NH3 mol­ecules (site symmetry 2) are located in the hexa­gonal windows and coordinate to the remaining equatorial sites of CuII. Both N atoms of the rod‐like Hg(CN)2 group (Hg site symmetry 2/m and CN site symmetry m) coordinate to the axial sites of CuII. This linkage completes the three‐dimensional framework and penetrates two hexa­gonal windows of two two‐dimensional network complexes to form the threefold‐inter­penetrating structure.  相似文献   

9.
The title compound, Cu0.5Mn2.5(PO4)2, is a copper–manganese phosphate solid solution with the graftonite‐type structure, viz. (Mn,Fe,Ca,Mg)3(PO4)2. The structure has three distinct metal cation sites, two of which are occupied by MnII and one of which accommodates CuII. Incorporation of CuII into the structure distorts the coordination geometry of the metal cation site from five‐coordinate square‐pyramidal towards four‐coordinate flattened tetrahedral, and serves to contract the structure principally along the c axis.  相似文献   

10.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

11.
(E)-2-(2-hydroxybenzylideneamino)isoindoline-1,3-dione (Hbid) was prepared by condensation of N-aminophthalimide and salicylaldehyde and characterized by elemental analysis, IR, 1H-NMR, and mass spectral studies. Mononuclear complexes [(phen)CuII(μ-Hbid)2H2O] (1), [(phen)CoII(Cl)2(μ-Hbid)]6H2O (2) (phen?=?1,10-phenanthroline) and binuclear complexes [CuII(μ-Hbid)]2 (3), and [CoII(μ-Hbid)]2 (4) with Hbid were prepared and characterized by elemental analysis, IR, UV-Vis, molar conductance, and thermogravimetric (TG) techniques. DNA-binding properties of 14 were investigated by UV spectroscopy, fluorescence spectroscopy, and viscosity measurements. The results suggest that 1 and 2 bind to DNA by partial intercalation, whereas 3 and 4 find different groove-binding sites. The cleavage of these complexes with super coiled pUC19 has been studied using gel electrophoresis; all the complexes displayed chemical nuclease activity in the absence and presence of H2O2 via an oxidative mechanism. Complexes 14 inhibit the growth of both Gram-positive and Gram-negative bacteria.  相似文献   

12.
Two new complexes, {[Co(INAIP) · H2O] · 2H2O}n ( 1 ), and {[Cu(INAIP)] · H2O}n ( 2 ) [H2INAIP = 5‐(isonicotinamido)isophthalic acid] were synthesized under hydrothermal conditions, and characterized by single‐crystal X‐ray structure determination, thermogravimetric analysis, X‐ray powder diffraction, and magnetic studies. In complex 1 both CoII atoms and INAIP2– ligands act as four‐connected node, whereas in 2 both CuII atoms and INAIP2– ligands act as three‐connected node.  相似文献   

13.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

14.
Two new cyano-bridged Cu(II)-Fe(II) binuclear complexes, [Cu(L1)Fe(CN)5(NO)] (I) [L1 = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane and [Cu(L2)Fe(CN)5(NO)] · 2H2O (II) L2 = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane, have been assembled and structurally characterized by spectroscopy and X-ray crystallography. Complex I crystallizes in the monoclinic crystalline system of space group P21/c, while complex II crystallizes in the monoclinic crystalline system of space group P21/n. These two complexes assume a binuclear structure in which the Fe2+ ion is in an octahedron environment and the Cu2+ ion is in a square-prism geometry environment.  相似文献   

15.
Three ZnII and CdII complexes with Y‐shaped dicarboxylate ligands, namely [Zn(L1)(2,2′‐bpy)2(H2O)] · 2H2O ( 1 ), [Zn(L1)(bpp)(H2O)] ( 2 ), and [Cd(L1)(H2O)] · H2O ( 3 ) [H2L1 = N‐phenyliminodiacetic acid, 2,2′‐bpy = 2,2′‐bipyridine, bpp = 1,3‐bis(4‐pyridyl)propane] were synthesized and characterized by elemental analysis, IR spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 shows an hydrogen‐bonded 2D network, whereas compound 2 is an infinite 1D wavy chain structure, though O–H ··· O hydrogen‐bonded to form a 2D network. Compound 3 displays a 2D uninodal 3‐connected Shubnikov plane net with the point symbol of (4.82). Moreover, the solid‐state such as thermal stabilities and fluorescence properties of 1 – 3 were also investigated.  相似文献   

16.
Assembly of bidentate ligand 1‐(1‐imidazolyl)‐4‐(imidazol‐1‐ylmethyl)benzene (IIMB) with varied metal salts of ZnII, CdII and PbII provide three new complexes, [Zn(IIMB)2](ClO4)2·2H2O ( 1 ), [Cd(IIMB)2(SCN)2] ( 2 ) and [Pb(IIMB)2(SCN)](SCN) ( 3 ). Single crystal X‐ray diffraction studies revealed that complexes 1 and 2 display a similar one‐dimensional double stranded chain structure, while complex 3 is a slight distorted rhombohedral grid network with (4,4) topology. The results indicate that the coordination geometry of the metal ion and the counter anion have great impact on the structure of the complexes. In addition, the photoluminescence properties of ligand IIMB and complexes 1 – 3 were studied in the solid state at room temperature.  相似文献   

17.
《化学:亚洲杂志》2017,12(1):145-158
Two classes of cationic palladium(II) acetylide complexes containing pincer‐type ligands, 2,2′:6′,2′′‐terpyridine (terpy) and 2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ‐donating C^N^C ligand with two N‐heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X‐ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 ( 1 ) and [Pd(C^N^C)(C≡CPh)]PF6 ( 7 ) reveal that the complex cations are arranged in a one‐dimensional stacking structure with pair‐like PdII⋅⋅⋅PdII contacts of 3.349 Å for 1 and 3.292 Å for 7 . Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd−Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo‐cytotoxicity under cellular conditions.  相似文献   

18.
Synthesis and characterization of seven new complexes [Cu(2‐MeSnic)2(CH3OH)]2 (where 2‐MeSnic is 2‐methylthionicotinate), [Cu(2‐MeSnic)2L2]2 (where L is pyridine — py, ethylnicotinate — Etnic and butylnicotinate — Bunic), [Cu(2‐MeSnic)2L2(H2O)2] (where L is py and nicotinamide — nia) and [Cu(2‐MeSnic)2(N‐Menia)2(H2O)2]·2H2O (where N‐Menia is N‐methylnicotinamide) are reported. The characterization were based on elemental analysis, infrared, electronic and EPR spectra, and magnetic susceptibility measurements over a temperature range of 1.8 — 300 K or 70 — 300 K. Three complexes of different type were studied by X‐ray analysis. The molecule of [Cu(2‐MeSnic)2(CH3OH)]2 has dimeric paddle‐wheel cage structure with a tetragonal pyramidal arrangement around CuII. The dimer results from the fact that carboxyl groups of four 2‐MeSnic anions function as bridging in a syn‐syn arrangement. On the other hand [Cu(2‐MeSnic)2(py)2]2 forms dimers with hexacoordinated CuII atoms in highly distorted coordination octahedra, each with two oxygen atoms of bridging carboxyl groups in an anti‐anti arrangement of two 2‐MeSnic anions, with two oxygen atoms of one asymmetrically chelating 2‐MeSnic anion and with two nitrogen atoms of two pyridine ligands. The temperature independent EPR spectrum for this complex exhibits an axial signal which corresponds to almost isolated S = 1/2 magnetic ions. Magnetic data for the dimer show a weak antiferromagnetic interaction between the two metal ions with J = —0.65 cm—1. The CuII atom in complex [Cu(2‐MeSnic)2(py)2(H2O)2] is hexacoordinated in an elongated centrosymmetrical tetragonal‐bipyramidal arrangement (4 + 2). Based on the molecular structure the electronic, infrared, electron paramagnetic resonance spectra and magnetic properties are discussed and stereochemistry as well as the mode of ligand coordination in new solid complexes under study have been determined.  相似文献   

19.
Dioxygen activation by copper complexes is a valuable method to achieve oxidation reactions for sustainable chemistry. The development of a catalytic system requires regeneration of the CuI active redox state from CuII. This is usually achieved using extra reducers that can compete with the CuII(O2) oxidizing species, causing a loss of efficiency. An alternative would consist of using a photosensitizer to control the reduction process. Association of a RuII photosensitizing subunit with a CuII pre‐catalytic moiety assembled within a unique entity is shown to fulfill these requirements. In presence of a sacrificial electron donor and light, electron transfer occurs from the RuII center to CuII. In presence of dioxygen, this dyad proved to be efficient for sulfide, phosphine, and alkene catalytic oxygenation. Mechanistic investigations gave evidence about a predominant 3O2 activation pathway by the CuI moiety.  相似文献   

20.
Li  Tao  Huang  Jin-Wang  Ma  Li  Zhang  Yong-Qing  Ji  Liang-Nian 《Transition Metal Chemistry》2003,28(3):288-291
The supramolecular self-assembly behavior, by hydrogen-bonding, of zinc(II) [Zn(p-CPTPP)], copper(II) [CuII-(p-CPTPP)] complexes [(p-CPTPP) = 5-(p-carboxyl)-phenylene-methanamidophenyl-10,15,20-triphenylporphyrin] were studied by fluorescence spectroscopic titration and by u.v.–vis. spectra. The fluorescence strengthening character was observed in the Zn(p-CPTPP)/CuII(p-CPTPP) system in a fluorescence spectroscopic titration experiment. The formation constant was determined from the fluorescence spectroscopic titration data and the fluorescence strengthening property of the system was discussed using the fluorescence spectrum of the charge-separated state obtained by the method of spline wavelet least squares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号