首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the polySBMA grafted surface. This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted polySBMA brushes.  相似文献   

2.
This work describes a tunable blood compatibility of zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymers at a wide range of high molecular weights from 50 kDa to 300 kDa controlled with a similar polydispersity via homogeneous free-radical polymerization. The control of molecular weights of polySBMA highly regulates the zwitterionic nonfouling nature to resist the adsorption of plasma proteins, the coagulant of human plasma, and the hemolysis of red blood cells. In this study, the upper critical solution temperatures (UCSTs) and hydrodynamic size of prepared polymers are determined to illustrate the correlations between intermolecular zwitterionic associations and blood compatibility of polySBMA suspension in human blood. The polySBMA exhibited clear shifts of UCSTs in the stimuli-responsive control of solution pH and ionic strength, which were strongly associated with the molecular weights of the prepared polymers. Plasma-protein adsorption onto the polySBMA polymers from single-protein solutions and the complex medium of 100% human plasma were measured by dynamic light scattering to determine the nonfouling stability of polySBMA suspension. It was found that the nonfouling nature as well as hydration capability of polySBMA can be effectively controlled via regulated molecular weights of zwitterionic polymers. This work shows that the polySBMA polymer with an optimized molecular weight of about 135 kDa at physiologic temperature is presented high hydration capability to function the best nonfouling character of anticoagulant activity and antihemolytic activity in human blood. The excellent blood compatibility of zwitterionic polySBMA along with their stimuli-responsive phase behavior in aqueous solution suggests their potential for use in blood-contacting targeted delivery and diagnostic applications.  相似文献   

3.
Surface modification of segmented poly(ether urethane) (SPEU) by graft copolymerization with N,N′-dimethyl-N-methacryloyloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, was conducted. A simple two-step procedure for grafting of DMMSA onto the surface of SPEU film was used. The surface was first treated with ozone to introduce active hydroperoxide groups. The active surface was then exposed to the DMMSA solution in the sealed tube. Grafted SPEU film was characterized by ATR–FTIR, XPS and contact angle measurement. ATR–FTIR and XPS investigations confirmed the graft copolymerization. The monomer concentration, copolymerization temperature and time were varied to maximize the efficiency of DMMSA grafting. The equilibrium water content (EWC) and contact angle measurements showed that the hydrophilicity of the film had been greatly improved. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP), deposits in blood control and protein adsorption in bovine fibrinogen using SPEU film as the control. No platelet adhesion and no thrombus were observed for the grafted films incubated in PRP for 300 min and in blood for 120 min, respectively. The protein adsorption was reduced on the grafted films after incubation in bovine fibrinogen for 120 min. These results proved that improved blood compatibility was obtained by grafting this new zwitterionic sulfobetaine structure monomer onto SPEU film.  相似文献   

4.
In this work, we investigate protein adsorption from single protein solutions and complex media such as 100% blood serum and plasma onto poly(sulfobetaine methacrylate) (polySBMA)-grafted surfaces via atom transfer radical polymerization (ATRP) at varying film thicknesses. It is interesting to observe that protein adsorption exhibits a minimum at a medium film thickness. Results show that the surface with 62 nm polySBMA brushes presents the best nonfouling character in 100% blood serum and plasma although all of these surfaces are highly resistant to nonspecific protein adsorption from single fibrinogen and lysozyme solutions. Surface resistance to 100% blood serum or plasma is necessary for many applications from blood-contacting devices to drug delivery. This work provides a new in vitro evaluation standard for the application of biomaterials in vivo.  相似文献   

5.
A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from α-bromo isobutyryl initiator-functionalized silicon nitride (Si(x)N(4), x ≥ 3) surfaces via controlled atom-transfer radical polymerization (ATRP). A trifunctional tris(2-aminoethyl)amine linker was reacted with the terminal alkylbromide of polySBMA chains. N-Hydroxysuccinimide (NHS) functionalization was achieved by reacting the resultant amine-terminated polySBMA brush with bifunctional suberic acid bis(N-hydroxysuccinimide ester). Anti-Salmonella antibodies were subsequently immobilized onto polySBMA-grafted Si(x)N(4) surfaces through these NHS linkers. The protein-repellent properties of the polySBMA-grafted surface after antibody attachment were evaluated by exposing the surfaces to Alexa Fluor 488-labeled fibrinogen (FIB) solution (0.1 g·L(-1)) for 1 h at room temperature. Confocal laser scanning microscopy (CLSM) images revealed the minimal adsorption of FIB onto the antibody-coated polySBMA in comparison with that of antibody-coated epoxide monolayers and also bare Si(x)N(4) surfaces. Subsequently, the interaction of antibodies immobilized onto polySBMA with SYTO9-stained Salmonella solution without using blocking solution was examined by CLSM. The fluorescent images showed that antibody-coated polySBMA efficiently captured Salmonella with only low background noise as compared to antibody-coated monolayers lacking the polymer brush. Finally, the antibody-coated polySBMA surfaces were exposed to a mixture of Alexa Fluor 647-labeled FIB and Salmonella without the prior use of a blocking solution to evaluate the ability of the surfaces to capture bacteria while simultaneously repelling proteins. The fluorescent images showed the capture of Salmonella with no adsorption of FIB as compared to antibody-coated epoxide surfaces, demonstrating the potential of the zwitterionic layer in preventing the nonspecific adsorption of the proteins during the detection of bacteria in complex matrices.  相似文献   

6.
In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.  相似文献   

7.
This work describes the superlow fouling properties of glass slides grafted with zwitterionic polymers to highly resist the adsorption of proteins and the adhesion of mammalian cells. Glass slides were first silanized using 2-bromo-2-methyl-N-3-[(triethoxysilyl)propyl]propanamide (BrTMOS). Two zwitterionic polymers, poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA), were then grafted from the silanized glass substrates using the atom-transfer radical polymerization (ATRP) method. X-ray photoelectron spectroscopy (XPS) was used to analyze the surfaces of the silanized glass substrates and the substrates grafted with the polymers. An enzyme-linked immonosobrbent assay (ELISA) using polyclonal antibodies was used to measure fibrinogen adsorption on these surfaces. The surfaces with polySBMA or polyCBMA layers were shown to reduce fibrinogen adsorption to a level comparable with that of adsorption on poly(ethylene glycol)-like films. Bovine aortic endothelial cells (BAECs) were seeded on these surfaces. The attachment and spreading of the cells were observed only on unpolymerized glass surfaces. This work further demonstrates that zwitterionic polymers highly resist nonspecific protein adsorption and cell adhesion and provides an effective method to modify glass slides or other oxide surfaces to achieve superlow fouling.  相似文献   

8.
Chaozhan Wang  Sa Zhao  Yinmao Wei 《中国化学》2012,30(10):2473-2482
Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrophilic property. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements confirmed the successful grafting and hydrolysis of PGMA. The grafting degree of the monomer, measured by periodic acid titration and gravimetric analysis, increased linearly with the polymerization time, while the static water contact angle of the membrane grafted with PGMA or hydrolyzed PGMA linearly decreased. In comparison with the PGMA‐grafted membranes, the hydrolyzed PGMA‐grafted membranes possess stronger hydrophilicity as indicated by their contact angle and hydration capacity, and as a result they have an improved antifouling property. Therefore, the control of the hydrophilicity of PSF membrane could be realized through adjusting the polymerization time and transforming the functional groups in the grafting chain.  相似文献   

9.
Platelet adhesion and protein adsorption on the silicone rubber film grafted with N,N'-dimethyl-N-methacryloyloxyethyl-N-(2-carboxyethyl) ammonium (DMMCA) was studied. The grafting was carried out by means of ozone-induced method and was confirmed by ATR-FTIR and XPS investigations. The grafted films possessed relatively hydrophilic surface revealed by contact angle measurement. The blood compatibility of the grafted film was evaluated in vitro by platelet adhesion in platelet-rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG) using silicone film as the reference. No substantial platelet adhesion was observed for the grafted films incubated in PRP for 60 and 180 min. The protein absorption was also significantly reduced after incubated in bovine fibrinogen for 60 min. Both the results indicated that the blood compatibility of silicone rubber was greatly improved by ozone-induced grafting of carboxybetaine zwitterionic polymer onto its surface.  相似文献   

10.
In this work, nonfouling zwitterionic polymers were grafted via surface-initiated atom transfer radical polymerization (ATRP) from surfaces covered with an adhesive catechol initiator. The catechol initiator was attached to both bare gold and amino-functionalized surfaces, and the nonfouling performances of the resulting polymer brushes were compared. Under optimal conditions, ultralow protein adsorption from both single-protein solutions of fibrinogen and lysozyme and complex media of 10% blood serum and 100% blood plasma/serum was achieved. Furthermore, the 3-day accumulation of Pseudomonas aeruginosa on the treated glass surfaces was studied in situ using a laminar flow chamber. The results showed that these zwitterionic coatings dramatically reduced the biofilm formation of P. aeruginosa as compared to the reference bare glass.  相似文献   

11.
In general, it is a challenge to control the highly polar material grafting from the chemically inert Teflon-based membrane surface. This work describes the surface modification and characterization of expanded poly(tetrafluoroethylene) (ePTFE) membranes grafted with poly(ethylene glycol) methacrylate (PEGMA) macromonomer via surface-activated plasma treatment and thermally induced graft copolymerization. The chemical composition and microstructure of the surface-modified ePTFE membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), contact angle, and bio-atomic force microscopy (bio-AFM) measurements. Biofouling property of the modified membranes was evaluated by the measurements of the plasma protein (γ-globulin, fibrinogen, or albumin) adsorption determined using an enzyme-linked immunosorbent assay (ELISA). In general, the hydrophilicity of the surface of ePTFE membranes increases with increasing the grafting degree of the copolymerized PEGMA. The highly hydrated PEGMA chain on the resulting ePTFE membranes was found to form a surface hydrogel-like layer with regulated coverage in aqueous state, which can be controlled by the content of PEGMA macromonomer in the reaction solution. The relative protein adsorption was effectively reduced with increasing capacity of the hydration for the PEGMA chain grafted on the ePTFE membrane surface. From both results of protein adsorption and platelet adhesion test in vitro, it is concluded that the PEGMA-grafted hydrophilic ePTFE membranes could provide good biofouling resistance to substantially reduce plasma protein and blood platelet fouling on the membrane surface in human body temperature.  相似文献   

12.
Surface modification is an effective way to improve the hemocompatibility and remain bulk properties of biomaterials. Recently, polymer tailed with zwitterions was found having good blood compatibility. In this study, the grafting copolymerization of sulfobetaine onto polyurethane surface was obtained through two steps. In the first step, polyurethane film coupled with vinyl groups was obtained through the reaction between the carboxyl group of acrylic acid (AA) and the NH-urethane group of polyurethane by dicyclohexylcarbodiimide (DCC). In the second step, sulfobetaine was grafted copolymerization on the surface using AIBN as an initiator. The reaction process was monitored with ATR-IR spectra and X-ray photoelectron spectroscopy (XPS) spectra. The wettability of films was investigated by water contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG). Low platelet adhesion was observed on the grafted films incubated in PRP for 1 and 3 h, respectively. The protein absorption was reduced on the grafted films after incubated in bovine fibrinogen for 2 h. All of these results revealed that the improved blood compatibility was obtained by grafting copolymerization with zwitterionic monomer of sulfobetaine onto polyurethane film. In addition, introducing vinyl groups onto surface through DCC and AA is a novel method to functionalize polyurethane for further modification.  相似文献   

13.
The strong surface hydration layer of nonfouling materials plays a key role in their resistance to nonspecific protein adsorption. Poly(sulfobetaine methacrylate) (polySBMA) is an effective material that can resist nonspecific protein adsorption and cell adhesion. About eight water molecules are tightly bound with one sulfobetaine (SB) unit, and additional water molecules over 8:1 ratio mainly swell the polySBMA matrix, which is obtained through the measurement of T(2) relaxation time by low-field nuclear magnetic resonance (LF-NMR). This result was also supported by the endothermic behavior of water/polySBMA mixtures measured by differential scanning calorimetry (DSC). Furthermore, by comparing both results of polySBMA and poly(ethylene glycol) (PEG), it is found that (1) the hydrated water molecules on the SB unit are more tightly bound than on the ethylene glycol (EG) unit before saturation, and (2) the additional water molecules after forming the hydration layer in polySBMA solutions show higher freedom than those in PEG. These results might illustrate the reason for higher resistance of zwitterionic materials to nonspecific protein adsorptions compared to that of PEGs.  相似文献   

14.
Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but further improvement of the hemocompatibility of a PCL film surface is still needed for wide biomedical applications. In this work, the PCL film surface was functionalized with zwitterionic poly(3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) (P(DMAPS)) brushes via surface-initiated atom transfer radical polymerization (ATRP) for enhancing hemocompatibility. Kinetics study revealed an approximately linear increase in graft yield of the functional P(DMAPS) brushes with polymerization time. The blood compatibilities of the modified PCL film surfaces were studied by platelet adhesion tests of platelet-rich plasma and human whole blood, hemolysis assay, and plasma recalcification time (PRT) assay. The improvement of hemocompatibility is dependent on the coverage of the grafted P(DMAPS) brushes on the PCL film. Lower or no platelet and blood cell adhesion was observed on the P(DMAPS)-grafted film surfaces. The P(DMAPS) grafting can further decrease hemolysis and enhance the PRT of the PCL surface. With the versatility of surface-initiated ATRP and the excellent hemocompatibility of zwitterionic polymer brushes, PCL films with desirable blood properties can be readily tailored to cater to various biomedical applications.  相似文献   

15.
Hollow-fibre membranes with different degrees of surface hydrophilicity were obtained by grafting mixtures of glycidyl methacrylate (GMA) and dimethyl acrylamide (DMAA) in various proportions, and Cibacron Blue F3G-A was attached to them through ammonia or glucamine spacers. Membrane hydrophilicity increased with the amount of dimethyl acrylamide in the grafted polymer. As the hydrophilicity increased the permeability decreased from 352 mL/cm2 min MPa for membranes grafted with GMA with ammonia spacer to 12.7 mL/cm2 min MPa for membranes grafted with GMA/DMAA 1/3 with glucamine spacer. Membranes grafted with GMA/DMAA 1/3 with ammonia spacer showed the best performance for BSA and lysozyme adsorption: maximum capacity was 15.3 +/- 2.2 mg BSA/mL membrane and 58.3 +/- 6.6 mg lysozyme/mL membrane while dissociation constants were 0.27 +/- 0.16 and 0.13 +/- 0.12 mg/mL, respectively. Over 80% of adsorbed proteins could be eluted with 2 M NaCl + 20% isopropanol in 20 mM sodium phosphate buffer, pH 7.0.  相似文献   

16.
In this study, we formed grafted polystyrene (PS) brushes possessing nanocluster structures through atom transfer radical polymerization from initiator cores presented on Si surfaces that had been generated using reactive ion etching (RIE). We established the surface grafting polymerization kinetics of the nanoclustered PS chains on the Si surfaces to fit their experimentally determined thickness (ellipsometry) and number-average molecular weight (M n) of “free” PS (gel permeation chromatography). The propagation rate (k p) and active grafting species deactivation rate (k d) were obtained from reactions involving styrene concentrations from 0.2 to 2 M. We also used scanning electron microscopy to observe the morphologies of the PS grafted to the surfaces after various reaction times at various styrene concentrations. The PS brushes grafted onto the Si surfaces under styrene concentrations of 0.2, 0.5, 1, and 2 M exhibited clustered structures having cluster diameters of 12, 28, 42, and 45 nm, respectively; from these observations, we calculated the critical grafting density. In addition, we generated highly dense, well-defined patterns of PS on patterned Si(100) surfaces through the use of a very-large-scale integration process involving electron beam lithography and RIE. We employed the RIE system to generate a high density of reactive species at the bottom of the trenches for graft polymerization. After 21 h of grafting, AFM imaging revealed dense line patterns of nanoclustered PS.  相似文献   

17.
Poly(N,N-dimethylacrylamide) (PDMA) brushes are successfully grown from unplasticized poly(vinyl chloride) (uPVC) by well-controlled surface-initiated atom transfer radical polymerization (SI-ATRP). Molecular weights of the grafted PDMA brushes vary from ≈ 35,000 to 2,170000 Da, while the graft density ranges from 0.08 to 1.13 chains · nm(-2). The polydispersity of the grafted PDMA brushes is controlled within 1.20 to 1.80. Platelet activation (expression of CD62) and adhesion studies reveal that the graft densities of the PDMA brushes play an important role in controlling interfacial properties. PDMA brushes with graft densities between 0.35 and 0.50 chains · nm(-2) induce a significantly reduced platelet activation compared to unmodified uPVC. Moreover, the surface adhesion of platelets on uPVC is significantly reduced by the densely grafted PDMA brushes. PDMA brushes that have high molecular weights lead to a relatively lower platelet activation compared to low-molecular-weight brushes. However, the graft density of the brush is more important than molecular weight in controlling platelet interactions with PVC. PDMA brushes do not produce any significant platelet consumption in platelet rich plasma. Up to a seven-fold decrease in the number of platelets adhered on high graft density brushes is observed compared to the bare PVC surface. Unlike the bare PVC, platelets do not form pseudopodes or change morphology on PDMA brush-coated surfaces.  相似文献   

18.
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS–P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS–P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h−1. In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in ‘green’ high-speed preparative protein chromatography.  相似文献   

19.
We present herein a versatile method for grafting polymer brushes to passivated silicon surfaces based on the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry) of omega-azido polymers and alkynyl-functionalized silicon substrates. First, the "passivation" of the silicon substrates toward polymer adsorption was performed by the deposition of an alkyne functionalized self-assembled monolayer (SAM). Then, three tailor-made omega-azido linear brush precursors, i.e., PEG-N3, PMMA-N3, and PS-N3 (Mn approximately 20,000 g/mol), were grafted to alkyne-functionalized SAMs via click chemistry in tetrahydrofuran. The SAM, PEG, PMMA, and PS layers were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. Results have shown that the grafting process follows the scaling laws developed for polymer brushes, with a significant dependence over the weight fraction of polymer in the grafting solution and the grafting time. The chemical nature of the brushes has only a weak influence on the click chemistry grafting reaction and morphologies observed, yielding polymer brushes with thickness of ca. 6 nm and grafting densities of ca. 0.2 chains/nm2. The examples developed herein have shown that this highly versatile and tunable approach can be extended to the grafting of a wide range of polymer (pseudo-) brushes to silicon substrates without changing the tethering strategy.  相似文献   

20.
A new class of clay-polymer nanohybrids was synthesized by grafting poly(N-isopropylacrylamide) (PNiPAAm) on the edge of nanoscale silicate platelets (NSPs) through covalently bonded linkers to form various architectures. The inherent ionic character of NSPs and the organic moieties of isopropyl amide in PNiPAAms impart surface active properties to the nanohybrids. Surface tension and particle size measurements were used to determine the critical micelle concentrations (CMCs) of the nanohybrids. It was found that PNiPAAm brushes grafted onto NSPs with the single-headed linkers are loosely packed and can expand easily in water causing inter-hybrid interactions. In contrast, PNiPAAm brushes grafted onto NSPs with the double-headed linkers may alternatively exhibit intra-hybrid interactions and the hybrids tend to exist in a dispersed state. Consequently, the latter has a higher CMC than the former. In addition, the CMC can be tailored by adjusting the grafting density of the linkers on the NSP surfaces. The densely grafted nanohybrids exhibit close inter-hybrid contact resulting in a lower CMC than that for the sparsely grafted nanohybrids. Molecular simulations were also performed to study the effects of the polymer-grafted architecture and the density of the linkers on the micellar behavior of NSP-PNiPAAm hybrids. The simulation results were found to be in good agreement with the experimental observations. Thus, it is possible to control the surface active properties and aggregation of the clay-PNiPAAm hybrids by manipulating the organic grafting architectures of the silicate platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号