首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cylindrical shell with end sections which are closed and supported by hinges, in accordance with the concepts of the rod theory, is considered to be under the action of an omnidirectional external pressure which remains normal to the lateral surface during the deformation process. It is shown that, for such shells, the previously constructed consistent equations of the momentless theory, reduced using the Timoshenko shear model to the one-dimensional equations of the rod theory, describe three forms of loss of stability: (1) static loss of stability, which occures through a bending mode from the action of the total end axial compression force since, under the clamping conditions considered, its non-conservative part cannot perform work on deflections of the axial line; (2) also a static loss of stability but one which occurs through a purely shear mode with the conversion of a cylinder with normal sections into a cylinder with parallel sloping sections and a corresponding critical load which is independent of the length of the shell; (3) dynamic loss of stability which occurs through a bending-shear form and can only be revealed by a dynamic method using an improved shear model.  相似文献   

2.
The refined equations of the free oscillations of a rod-strip, constructed previously in a first approximation by reducing the two-dimensional equations to one-dimensional equations by using trigonometric basis functions and satisfying the static boundary conditions on the boundary surfaces are analysed. These equations, the solutions of which are obtained for the case of hinge-supported end sections of the rod, are split into two independent systems of equations. The first of these describe non-classical fixed longitudinal-transverse forms of free oscillations, which are accompanied by a distortion of the plane form of the cross section. It is shown that the oscillation frequencies corresponding to them depend considerably on Poisson's ratio and the modulus of elasticity in the transverse direction, while for a rod of average thickness for the same value of the frequency parameter (the tone) they may be considerably lower than the frequencies corresponding to the classical longitudinal forms of free oscillations, which are performed while preserving the plane form of the cross sections. The second system of equations describes transverse flexural-shear forms of free oscillations, whose frequencies decrease as the transverse shear modulus decreases. They are practically equivalent in quality and content to the similar equations of well-known versions of the refined theories, but, unlike them, when the number of the tone increases and the relative thickness parameter decreases they lead to the solutions of the classical theory of rods.  相似文献   

3.
Analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. In addition, it contains only two unknowns and has strong similarities with the classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion are derived from Hamilton’s principle. Closed-form solutions of deflection, buckling load, and natural frequency are obtained for rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are presented to verify the validity of present solutions. It is found that the deflection, stress, buckling load, and natural frequency obtained by the present theory match well with those obtained by the first-order and third-order shear deformation theories.  相似文献   

4.
An analytical approach for static bending and buckling analyses of curved nanobeams using the differential constitutive law, consequent to Eringen’s strain-driven integral model coupled with a higher-order shear deformation accounting for through thickness stretching is presented. The formulation is general in the sense that it can be deduced to examine the influence of different structural theories, for static and dynamic analyses of curved nanobeams. The governing equations derived using Hamiltons principle are solved in conjunction with Naviers solutions. The formulation is validated considering problems for which solutions are available. A comparative study is made here by various theories obtained through the formulation. The effects various structural parameters such as thickness ratio, beam length, rise of the curved beam, and nonlocal scale parameter are brought out on bending and stability characteristics of curved nanobeams.  相似文献   

5.
Geometrically non-linear and linearized equations in the theory of momentless shells are set up based on the kinematic relations in [Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005; 69(5): 861–81]. The use of these equations, unlike in the case of the well-known equations, enables one to avoid the occurrence of spurious bifurcation points in solving real problems. Non-classical problems of the stability of cylindrical shells under an external pressure, axial compression and torsion are considered, which can be formulated on the basis of the derived equations of the theory of momentless shells. Their exact analytical solutions are found and enable one to estimate the quality of the previously obtained relations [Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005; 69(5): 861–81] and the richness of content of the equations which have been constructed compared with well-known equations in the mechanics of thin shells. It is established that the majority of the new forms of loss of stability of cylindrical shells which are revealed relate to a number of shear forms, the onset of which is possible before the flexural forms which have been well studied up to now, in the case of small values of the shear modulus of a shell material with a very highly pronounced anisotropy in its properties.  相似文献   

6.
Exact analytical solutions of problems on the static and dynamic forms of the loss of stability of a ring, under the action of a linear torque constant along the perimeter, are found using the consistent equations of the theory of plane curvilinear rods constructed earlier taking account of transverse shears. Two forms of torsion of the ring are examined: the external forces creating a torque remain in the plane of a cross-section of the ring in its initial undeformed state (“dead” forces, case 1) or in its deformed state (“follower” forces, case 2). It is shown that, in the second case, the solution of the static instability problem found is practically identical to the solution of the problem corresponding to the dynamic formulation and is reduced to an examination of the oscillations about the static equilibrium position. In the case of both forms of loading, loss of stability of the ring occurs without deformation of its axial line, with it bending predominantly in the plane of the ring accompanied by a slight distortion. It is established that a study of the forms of loss of stability of the ring for the type of loading considered is only possible using the equations constructed, taking account of transverse shear.  相似文献   

7.
A refined mathematical model of the dynamic problem of coupled thermoelasticity of heterogeneous anisotropic shells taking into account the anisotropy of thermomechanical properties of the material both in the median surface and in the transversal direction is developed. The model includes initial deformations and is based on the assumption that the components of the vector of displacements and temperature are linearly distributed over the thickness. The reliability of the proposed model is evaluated by comparing the solutions obtained on its basis with the corresponding solutions obtained by using the theory of elasticity.  相似文献   

8.
We consider an elastic model for a shell incorporating shear, membrane, bending and dynamic effects. We make use of the theory proposed by Arnold and Brezzi [1] based on a locking free non-standard mixed variational formulation. This method is implemented in terms of the displacement and rotation variables as the minimization of an altered energy functional. We extend this theory to the shell vibrations problem and establish optimal error estimates independent of the thickness, thereby proving that shear and membrane locking is avoided. We study the numerical stability both in static and dynamic regimes. The approximation schemes are tested on specific examples and the numerical results confirm the estimates obtained from theory.  相似文献   

9.
Closed-form solutions for free vibration analysis of orthotropic plates are obtained in this paper based on two variable refined plate theory. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the natural frequency of orthotropic plates are investigated and discussed in detail.  相似文献   

10.
In this paper, a novel dynamic model for smart structural systems cross-ply laminated cantilever plate with smart material Macro fiber composites (MFC) layer is presented by using zigzag function theory. The nonlinear dynamic response and dynamic instability of the smart structural systems are studied for the first time. The plate is subjected to the uniformed static and in-plane harmonic excitation conjunction with electrically loaded under different electric boundary conditions. The partial layer-wise theory which the first shear deformation theory is expanded by introducing the zigzag function in the in-plane displacement components is adopted. The carbon fiber reinforced composite material T800/M21and macro fiber composites (MFC-d31) M8528-P3 are implemented. By Lagrangian equation and Chebyshev polynomial, the equations of motion are derived for the laminated plate. The validation and convergence are studied by comparing results with literatures. The dynamic instability regions and the critical buckling load characteristics can be obtained for different layer sequences, geometric dimensions and also the electromechanical effects are considered. Nonlinear dynamic responses of the laminated plate are studied by using numerical calculation. It can be seen that in certain state the plate will loses stability and the periodic, multiple period as well as chaotic motions of the plate are found.  相似文献   

11.
In the present study, higher order shear and normal deformable plate theory is developed for analysis of incompressible functionally graded rectangular thick plates. Also, The effect of incompressibility is studied on the static, dynamic and stability responses of thick plate. It is assumed that plate is incompressible and the incompressibility condition is considered in addition to the governing equations for determining the unknowns. Since the plate is thick, higher order shear and normal deformable theory is applied so that the Legendre polynomials are used for expansion of displacement field components in the thickness direction. Also, it is supposed that material properties vary through the thickness based on the power law function. Utilizing the variational approach, governing equations for static, stability and dynamic analysis of plate are derived. Resulted equations are solved analytically for simply supported plates. Finally, the effects of material properties and dimensions on the response of incompressible plates are investigated in details.  相似文献   

12.
A new method is presented for the characterization of three principal complex shear moduli of linear viscoelastic orthotropic materials, which is based on the measurement of complex torsional vibration frequencies of three rods of rectangular cross section. The rod-type test specimens are cut out from a composite plate along the principal material axes in the reinforcement plane. It is shown that the torsional stiffness of an elastic rod can be calculated not only by means of the Saint-Venant torsion theory, but also using a relationship obtained from the Reissner-Mindlin theory of plates. The transfer to a viscoelastic model of the material with complex moduli is realized with the help of the correspondence principle. By applying a numerical sensitivity analysis of natural frequencies to the shear moduli, the advisable width-to-thickness ratios of the specimens are found. As an illustration of data processing, the dynamic shear moduli and the loss factors for a GFRP fabric with an epoxy matrix are calculated. A comparison of the method offered with some known static and dynamic methods for determining the shear moduli of orthotropic materials is given.  相似文献   

13.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

14.
This paper presents a non-polynomial coupled plate theory for smart composite structures employing inverse hyperbolic displacement and electric potential functions. The theory is utilized towards analysis of composite piezoelectric plates operating in sensor and actuator modes. Particularly, the following three cases are studied: (i) passive laminated composite structure, (ii) composite piezoelectric plate actuator and (iii) unimorph and bimorph piezoelectric plate sensors. Analytical solutions are obtained for simply supported plates under static electrical and mechanical loads. These results are validated with existing 3D elasticity solutions and compared with other plate theory solutions. Furthermore, parametric studies are performed to determine the effect of loading, span-to-thickness ratio and lamination sequence on the response of the piezoelectric plate. Finally, the theory is applied to a transverse shear sensing device which utilizes transverse shear-electric field coupling in piezoelectric materials. This effect is often ignored in literature.It is observed that the maximum percentage error of the present theory, when compared with 3D results, is less than 3%, which is lower than other higher order plate theories.  相似文献   

15.
The stability of a cylindrical glass-reinforced plastic shell subjected to external pressure is considered in the geometrically nonlinear formulation with allowance for initial irregularities. The refined shell theory [6, 7], which enables transverse shear strains to be taken into account, is employed. A general algorithm of the solution has been written in ALGOL-60. A numerical solution of the problem has been obtained on a BÉSM-3M computer. Critical loads have been determined over a wide range of variation of the geometrical and physical parameters of the shell. It is established that the difference between the results of the classical and refined theories depends on the thickness, length, and physical parameters of the shell. The classical theory is asymptotically exact as the thickness of the shell tends to zero or the interlaminar shear modulus tends to infinity.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 857–862, September–October, 1969.  相似文献   

16.
The main stages of development of the stability theory of sandwich structural elements are considered. The mechanism of their stability loss is revealed using the experimental data and theoretical solutions obtained on the basis of refined statements of problems. A classification of all possible forms of stability loss is given within the limits of continuum representation of load-bearing layers and the core of these structures.Center for Study of Dynamics and Stability, Tupolev Kazan State Technical University, Kazan, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 707–716, November–December, 1999.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(21-22):5160-5173
Semi-analytical solutions for autocatalytic reactions with mixed quadratic and cubic terms are considered. The kinetic model is combined with diffusion and considered in a one-dimensional reactor. The spatial structure of the reactant and autocatalyst concentrations are approximated by trial functions and averaging is used to obtain a lower-order ordinary differential equation model, as an approximation to the governing partial differential equations. This allows semi-analytical results to be obtained for the reaction–diffusion cell, using theoretical methods developed for ordinary differential equations. Singularity theory is used to investigate the static multiplicity of the system and obtain a parameter map, in which the different types of steady-state bifurcation diagrams occur. Hopf bifurcations are also found by a local stability analysis of the semi-analytical model. The transitions in the number and types of bifurcation diagrams and the changes to the parameter regions, in which Hopf bifurcations occur, as the relative importance of the cubic and quadratic terms vary, is explored in great detail. A key outcome of the study is that the static and dynamic stability of the mixed system exhibits more complexity than either the cubic or quadratic autocatalytic systems alone. In addition it is found that varying the diffusivity ratio, of the reactant and autocatalyst, causes dramatic changes to the dynamic stability. The semi-analytical results are show to be highly accurate, in comparison to numerical solutions of the governing partial differential equations.  相似文献   

18.
In this paper, we consider the modeling, analysis, and computation of solutions to both static and dynamic models of multiproduct, multipollutant noncompliant oligopolistic firms who engage in a market for pollution permits. In the case of the static model, we utilize variational inequality theory for the formulation of the governing equilibrium conditions as well as the qualitative analysis of the equilibrium pattern, including sensitivity analysis. We then propose a dynamic model, using the theory of projected dynamical systems, whose set of stationary points coincides with the set of solutions to the variational inequality problem. We propose an algorithm, which is a discretization in time of the dynamic adjustment process, and provide convergence results using the stability analysis results that are also provided herein. Finally, we apply the algorithm to several numerical examples to compute the profit-maximized quantities of the oligopolistic firms' products and the quantities of emissions, along with the equilibrium allocation of licenses and their prices, as well as the possible noncompliant overflows and underflows. This is the first time that these methodologies have been utilized in conjunction to study a problem drawn from environmental policy modeling and analysis.  相似文献   

19.
A variant of vibration theory for three-layered shells of revolution under axisymmetric loads is elaborated by applying independent kinematic and static hypotheses to each layer, with account of transverse normal and shear strains in the core. Based on the Reissner variational principle for dynamic processes, equations of nonlinear vibrations and natural boundary conditions are obtained. The numerical method proposed for solving initial boundary-value problems is based on the use of integrodifferential approach for constructing finite-difference schemes with respect to spatial and time coordinates. Numerical solutions are obtained for dynamic deformations of open three-layered spherical and ellipsoidal shells, over a wide range of geometric and physical parameters of the core, for different types of boundary conditions. A comparative analysis is given for the results of investigating the dynamic behavior of three-layered shells of revolution by the equations proposed and the shell equations of Timoshenko and Kirhhoff-Love type, with the use of unified hypotheses across the heterogeneous structure of shells.  相似文献   

20.
Based on linearized equations of the theory of elastic stability of straight composite bars with a low shear rigidity, which are constructed using the consistent geometrically nonlinear equations of elasticity theory for small deformations and arbitrary displacements and a kinematic model of Timoshenko type, exact analytical solutions of nonclassical stability problems are obtained for a bar subjected to axial compression and torsion for various modes of end fixation. It is shown that the problem of direct determination of the critical parameter of the compressive load at a given torque parameter leads to transcendental characteristic equations that are solvable only if bar ends have cylindrical hinges. At the same time, we succeeded in obtaining solutions to these equations in terms of wave formation parameters of the bar; these parameters, in turn, enabled us to find the parameter of the critical load at any boundary conditions. Also, an algorithm for numerical solution of the problems stated is proposed, which is based on reducing the problems to systems of integroalgebraic equations with Volterra-type operators and on solving these equations by the method of mechanical quadratures (finite sums). It is demonstrated that such numerical solutions exist only for certain ranges of parameters of the bar and of the parameter of torque. In the general case, they can not be obtained by the numerical method used. It is also shown that the well-known solutions of the stability problem for a bar subjected to torsion or to compression with torsion are in correct. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 167–200, March–April, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号