首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
An improved method of determining the interlaminar shear strength of reinforced plastics from the results of mechanical bending tests on beams of different lengths is described and the results of an experimental verification of the method on glass-reinforced textolite and longitudinal-transverse-wound (LTW) glass-reinforced plastic are presented.  相似文献   

3.
Conclusions Experiments were carried out with several types of unidirectionally reinforced hybrid composites (organic fiberglass plastic, organic carbon-reinforced plastic, organic boron-reinforced plastic, and carbon fiberglass plastic) with various ratios of the volume content of the fibers in various modes of simple quasistatic loading. It is shown that the strength of the examined materials in the plane stress state can be described phenomenologically by the polynomial criterion of strength with the components of the tensors of the strength surface depending on the structural parameters. The result can be used to predict (carry out interpolation calculations) the strength of the above-mentioned composites within the examined ranges of the volume content of the reinforcing fibers to optimize the selection of the type and ratio of the content of various fibers in the hybrid composite taking into account specific requirements on the strength properties of the material in the structures.Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 35–41, January–February, 1984.  相似文献   

4.
A procedure and apparatus for determining the thermal activity of glass-reinforced plastics with one-sided access have been developed. A correlation is established between the interlaminar shear modulus and interlaminar shear strength and the thermal activity of a glass laminate. The effect of structural inhomogeneities and bonding flaws on the thermal activity of a glass-reinforced plastic is investigated and it is shown that the location of an inhomogeneity within the article can be determined.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 128–132, January–February, 1976.  相似文献   

5.
The hybrid composite consists of n(n > 2) jointly working phases. We define the thermomechanical characteristics and strength of composites by filling and reinforcing materials thermomechanical characteristics and strength basing on the suggestion that thin and strong fibre reinforced composite is quasiuniform, and there is a continuous contact between the filling medium and reinforcing fibers. The development of a mathematical model of the design under consideration has been based on following assumptions: 1) for irreversible processes, the classical thermodynamic postulates are valid, and they are introduced as functions of state of internal energy and entropy; 2) for a solitary volume of materials, internal energy is assumed to be proportional to the volume fraction of the j-th phase vj; 3) for the material pressure limit conditions just before the essential damage, it is suggested that: a) the whole composite as well as the components are steady, i.e. Drukker's postulate is valid; b) the deformation law associated with the corresponding strength surface is valid, and c) small values of increases in plastic deformation play the leading role. The strength of unidirectionally reinforced hybrid monolayers is predicted by using a linear programming code.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 2, pp. 186–192, March–April, 1995.The studies were carried out with financial support of the International Scientific Fund founded by G. Soros.  相似文献   

6.
Conclusions 1. An equation has been derived for the strength during interlayer shear along reinforcing fibers of a composite material of unidirectional texture which allows calculation of this index as a function of composition of the material and state of the interphase boundary. Experimental confirmation of this equation has shown that the effectiveness of surface treatment of the reinforcing filler can be estimated by its use.2. It has been shown that the strength during interlayer shear of an epoxy-phenol plastic can be increased by a factor of more than 3, and during bending by a factor of 1.3, as the result of treatment of high-modulus carbon fibers in nitric acid.3. A correlation has been established between changes in electrical resistivity of the carbon fiber and the molecular component of adhesion to it of consolidated epoxy-phenol binder.Moscow. Translated from Mekhanika Polimerov, No. 3, pp. 445–451, May–June, 1977.  相似文献   

7.
Conclusions The range of geometrical dimensions of a sample in which the values of the interlaminar shear strength determined by four of the five methods discussed are practically constant has been established. Good agreement is shown in the values of the characteristic being determined which are obtained by each of the four methods. It has been established that the experimental data obtained by the method of three-point deflection of short beams does not characterize their interlaminar shear strength. It is shown that the interlaminar shear strength of glass-plastic and the shear strength of the adhesive with which it is prepared are very similar in value.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 640–648, July–August, 1976.  相似文献   

8.
Analytic formulas for the averaged elastic and strength characteristics of a honeycomb core with a hexahedral structure are derived by introducing the hypothesis about the momentless work of its elements (walls) in the course of loading and during their stepwise exclusion from operation after their buckling in compression-compression or pure shear. The dimensionless coefficients appearing in the structural formulas when solving the problems formulated are to be determined from experimental data on tension, compression, and pure shear in two planes. It is shown that, in tension-compression, honeycomb must be considered as a heteromodular material with averaged elastoplastic properties, for which the relations between averaged stresses and averaged strains in compression and shear change stepwise on some sections (conditional plastic flow).  相似文献   

9.
基于微观力学的均匀化理论,旨在从核辐射屏蔽材料的微观结构、物理特性的角度出发,通过多尺度方法研究了材料宏观的机械力学性质.主要研究对象为颗粒弥散增强的孔隙基体材料,推导出了此类复合材料(金属基材料、非金属类材料)的强度准则模型,可预测微观孔隙率与颗粒相体积分数对材料宏观强度的影响.在塑性极限分析法的理论框架下,在介观上成功引入了速度场跳动来描述两相界面间的力学特性,利用刚性核的球体胞元模型进行求解.最后,选用了界面速度为0的速度场对模型进行研究,并初步探讨了界面效应对材料性能的影响.  相似文献   

10.
The mechanical characteristics of oriented glass-reinforced plastics stressed in shear are considered. Various methods of determining them are compared. The dispersion of the shear strength is characterized and the possibility of glass-reinforced plastics elements failing as a result of low interlaminar shear strength is discussed.Moscow Aviation Technological Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1008–1013, November–December, 1969.  相似文献   

11.
The deformation behavior of a 4D composite reinforced along cube diagonals under large shear deformations is examined. The investigation is based on an applied theory which allows one to perform a macromechanical analysis of composite materials with small volume contents of reinforcing yarns to an accuracy sufficient in practice. Qualitative differences between the properties of such composites under large and small shear deformations are revealed. The evolution of the structural geometry of the deformed composite material is traced.  相似文献   

12.
An oriented glass-reinforced plastic may be treated as a regular multilayer material. Given large number of layers we can replace the discrete model with a continuous medium whose elastic constants are determined by the properties of the components. Using this approach and assuming that the reinforcing and the resin obey Hooke's law, we examine the problem of the bending of oriented glass-reinforced plastics and by means of two examples demonstrate the importance of shear effects in the bending of beams. The experimental results are in good agreement with theory.Mekhanika Polimerov, Vol 1, No. 2, pp. 38–46, 1965  相似文献   

13.
The creep and long-time strength in interlaminar shear and the creep in compression in the direction of the reinforcement have been experimentally investigated for certain types of oriented glass-reinforced plastics. The specimens in the interlaminar creep tests took the form of short beams loaded in bending. The experimental creep data for shear and compression are well described by the hereditary theory with a kernel of the Abel type (shear) or in the form of a Rabotnov function (compression). If the stresses are constant in time, good agreement with experiment is also given by Findley's form of the aging theory. A deformation criterion of interlaminar shear strength is also obtained. The experimental curves and values of the creep and long-time strength constants are presented.Translated from Mekhanika Polimerov, No. 6, pp. 1003–1012, November–December, 1971.  相似文献   

14.
The deformation and strength properties of undirectionally reinforced plastics in longitudinal shear are investigated. A law of shear deformation that takes into account the nonlinear properties of the matrix is established. Two modes of failure of the reinforced plastic are examined. The dependence of the shear strength of the plastic on the volume reinforcement content and the strength properties of the matrix is investigated.  相似文献   

15.
Free vibration and static analysis of functionally graded material (FGM) plates are studied using higher order shear deformation theory with a special modification in the transverse displacement in conjunction with finite element models. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. The fundamental equations for FGM plates are derived using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. Results have been obtained by employing a continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence tests and comparison studies have been carried out to demonstrate the efficiency of the present model. Numerical results for different thickness ratios, aspect ratios and volume fraction index with different boundary conditions have been presented. It is observed that the natural frequency parameter increases for plate aspect ratio, lower volume fraction index n and smaller thickness ratios. It is also observed that the effect of thickness ratio on the frequency of a plate is independent of the volume fraction index. For a given thickness ratio non-dimensional deflection increases as the volume fraction index increases. It is concluded that the gradient in the material properties plays a vital role in determining the response of the FGM plates.  相似文献   

16.
Bartlomiej Winiarski  Igor A. Guz 《PAMM》2007,7(1):4030011-4030012
Aviation and aerospace structural components made of composite laminates due to their internal structure and manufacturing methods often contain a number of inter- and intra-component defects which size, dispersion and interaction alter significantly the critical compression strain level [1]. The current study investigates the effect of the cracks interaction and crack faces contact interaction on the critical strain in laminar transversally isotropic material (cross-ply) compressed in a static manner along interlaminar defects. The frictionless Hertzian contact and the shear and extensional mode of stability loss are considered for the interacting crack faces. The statement of the problem is based on the most accurate approach, the model of piecewise-homogenous medium and the 3-D stability theory [2]. The moment of stability loss in the microstructure of material is treated as the onset of the fracture process. The complex non-classical fracture mechanics problem is solved utilizing the finite elements analysis. The results are obtained for the typical dispositions of cracks. It was found that the crack faces contact interaction alter significantly the critical strain level of the composite. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In the present work, the exact solutions for coupled analysis for bending and torsional case thin-walled functionally graded (FG) beams with non-symmetric single- and double-cells are presented for the first time. For this purpose, an accurate and efficient method is proposed to obtain the FG member stiffness matrix based on the series expansions of displacement components. Three types of material distributions are considered and the beam mechanical properties are graded along the wall thickness according to a power law of the volume fraction. The present beam model is on the basis of the Euler-Bernoulli beam theory and the Vlasov one for bending and torsional problems, respectively. The explicit expressions for displacement parameters are derived using the power series approach from the four coupled equilibrium equations. Finally, the FG member stiffness matrix is determined from the seven force-displacement relations. In order to show the accuracy and super convergence of the thin-walled FG beam element developed by this study, the numerical solutions are presented and compared with results obtained from the finite beam element based on the approximate interpolation polynomials and other available results. Especially, the effects of various structural parameters such as material distribution type, volume fraction index, boundary condition, and material ratio on the spatially coupled responses of FG box beams with non-symmetric single- and double-cells are parametrically investigated.  相似文献   

18.
The influence of an active diluent on the properties of an epoxy matrix and carbon-fiber-reinforced plastics (CFRP) is investigated. The physicomechanical properties of an ED-20 epoxy resin modified with diglycidyl ether of diethylene glycol (DEG-1), the adhesion strength at the epoxy matrix–steel wire interface, and the mechanical properties of unidirectional CFRP are determined. The concentration of DEG-1 was varied from 0 to 50 wt.%. The properties of the matrix, the interface, and the composites are compared. It is stated that the matrix strength affects the strength of unidirectional CFRP in bending and not their strength in tension, compression, and shear. The latter fact seems somewhat unexpected. The interlaminar fracture toughness of the composites investigated correlates with the ultimate elongation of the binder. A comparison between the concentration dependences of adhesion strength and the strength of CFRP shows that the matrices utilized provide such a high interfacial strength that the strength of CFRP no longer depends on the adhesion of its constituents.  相似文献   

19.
The state of stress and strain of stiffened glass-reinforced plastic shells subjected to local loads applied to the stiffeners is investigated with allowance for interlaminar shear strains over the thickness of the glass-reinforced plastic. The solution is based on Vlasov's semimembrane theory. A comparative experimental-theoretical investigation has been made using models subjected to radial and axial loads and twisting moments.  相似文献   

20.
Conclusions 1. The rolling-in (packing) of wound glass-plastic objects is a favorable technological factor, improving the homogeneity of the material, increasing the elastic and strength characteristics of the glass plastic, and reducing the thermal expansion coefficients and macroscopic residual stresses due to the thermal shrinkage of the objects.2. However, extremely large packing forces may reduce certain of the mechanical characteristics of the material, chiefly the strength and modulus relating to interlayer shear.Moscow Power Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1043–1047, November–December, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号