首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boundary value problems in the plane moment and simplified moment elasticity theory of inhomogeneous isotropic media are reduced to Riemann-Hilbert boundary value problems for a quasianalytic vector. Uniquely solvable integral equations over a domain are derived. As a result, weak solutions for composite inhomogeneous elastic media can be determined straightforwardly.  相似文献   

2.
球形涂层粒子增强复合材料的有效模量   总被引:2,自引:0,他引:2  
本文通过四相球模型和复合材料的等效介质理论,研究了球形涂层粒子增强复合材料的有效模量性质,得到了这种增强复合材料的有效体积模量和有效剪切模量的理论预测公式。这些结果在特殊情况下,可退化到三相球模型确定的球形粒子增强复合材料的有效模量公式。  相似文献   

3.
Conclusions The proposed variant of the statistical theory of composite media makes it possible to derive relations between the effective parameters of the medium and the dispersion characteristics of the structure, and also to account for the effect of specimen shape and variable structural heterogeneity on these parameters. In the limiting case of an infinitely large specimen, all relationships comply with the results of the traditional theory of composite systems.Presented at the Sixth All-Union Conference on the Mechanics of Polymer and Composite Materials (Riga, November, 1986).Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 21–30, January–February, 1988.  相似文献   

4.
A structural macroscopic theory of stiff and soft composites, which generalizes the theory in [1] constructed with application of a model of one-dimensional stressed state of reinforcing fibers in the current configuration of a composite is presented. The theory combines the micro- and macromechanics of composite materials. The two trends in the mechanics of composites are based on the idea of a field of macroscopic displacements and the concept of macroscopic stresses of the composite material when changes in the metrics of the matrix and reinforcing fibers in the current state of a composite medium are taken into consideration. The fibers of the reinforcing systems and matrix are analyzed on the basis of a general 3D model of deformation. No limits on the stiffness of the materials of the structural components are imposed. The analysis of the composite medium, on the macromechanical level, includes a definition of macrodisplacement and macrodeformation fields, as well as parametric structural fields in the current configuration. On the micromechanical level, the fields of macroscopic stresses in the medium, together with the fields of microscopic strains and stresses in the structural components, are defined on the basis of information obtained from the analysis of the field of the macroscopic displacements. With the corresponding interpretation of the field of macroscopic displacements, the structural macroscopic theory is applied to composite media with fibrous, laminated, and matrix structures.  相似文献   

5.
The statistical boundary value problem of the theory of elasticity of macrohomogeneous composite media in the natural (unstressed) starting state is extended to media with internal stresses of shrinkage origin. It is established that the moduli of elasticity of the composite do not depend on the magnitude of the shrinkage stresses. The conditions, under which shrinkage of the resin in materials of the glass-reinforced plastic type does not lead to warping, are determined. Applications of the results to the computation of structural reliability characteristics are noted.Kirov Ural Polytechnical Institute, Sverdlovsk. Translated from Mekhanika Polimerov, No. 4, pp. 676–681, July–August, 1970.  相似文献   

6.
The theory of long-term damageability of a homogeneous material is generalized to the case of an orthotropic fibrous composite material with a stochastic structure. Equations of mechanics of microinhomogeneous media of this structure form the base of the theory. The process of damage of components of a composite is modeled by the formation of stochastically located micropores. The criterion of fracture of a unit microvolume is characterized by its long-term strength determined by the dependence of the time of brittle fracture on the degree of closeness of the equivalent stress to its limit value, which characterizes the short-term strength on the basis of the Huber–von Mises criterion accepted as an arbitrary function of coordinates. Efficient deformation properties and the stress-strain state of an orthotropic fibrous composite with microdamages in components are determined on the base of stochastic equations of elasticity of orthotropic media. For given macrostresses and macrostrains and an arbitrary moment of time, balance equations of damage (porosity) of components are formulated. On the basis of the iteration method, we construct algorithms for calculating dependences of microdamage of components of an orthotropic fibrous material on time and dependences of macrostresses or macrostrains on time and obtain the corresponding curves for the case of a bounded function of the long-term microstrength, which is approximated by an exponential law.  相似文献   

7.
A nonlinear version of the phenomenological theory of long-term strength of polymer materials (viscoelastic bodies) is proposed. It is based on the introduction of a function accounting for the damage accumulation connected with changes in the load intensity. The form of this function may be determined from the results of testing the material with a load changing with time in a certain way, for instance, periodically. As a parameter, the function contains the rate of the changing load or the frequency for periodic loads. For a quasi-isotropic material, the basic relationships of the theory proposed are generalized to the case of combined stresses. The durability (failure time) calculations of the material based on this theory are compared with experimental data for a number of polymer and composite materials in a wide range of loading modes. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 5, pp. 585–594, September–October, 1999.  相似文献   

8.
Conclusions We obtained practically convenient modifications of the theory of flow and TSEPD [3] for porous and anisotropic media with different strength. These qualities are taken into account with the aid of the respective stress and strain intensities. The fundamental hypotheses are confirmed by verification in known experiments with polymer and composite materials. As an example we examined elastoplastic tension of an anisotropic specimen and the limit state of an internally loaded disk, both made of materials with the mentioned qualities.Communication 1, see [2].Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 426–432, May–June, 1986.  相似文献   

9.
The mechanical behavior of carbon-fiber-reinforced polymer matrix composites having undergone a thermo-oxidation process is studied. The purpose is to perform a multiscale analysis of the consequences of oxidation on the intrinsic mechanical properties of the external composite ply and on the internal mechanical states experienced by the structure under mechanical loads. The effective mechanical properties of oxidized composite plies are determined according to the Eshelby–Kr?ner self-consistent homogenization procedure, depending on evolution of the oxidation process. The results obtained are compared with estimates found by the finite-element method. The macroscopic mechanical states are calculated for a unidirectional composite and laminates. The macroscopic stresses in each ply of the structure are determined by the classical lamination theory and the finite-element method, whereas the local stresses in the carbon fiber and epoxy matrix are calculated by using an analytical stress concentration relation.  相似文献   

10.
We consider two models for directed polymers in space‐time independent random media (the O'Connell‐Yor semidiscrete directed polymer and the continuum directed random polymer) at positive temperature and prove their KPZ universality via asymptotic analysis of exact Fredholm determinant formulas for the Laplace transform of their partition functions. In particular, we show that for large time τ, the probability distributions for the free energy fluctuations, when rescaled by τ1/3, converges to the GUE Tracy‐Widom distribution. We also consider the effect of boundary perturbations to the quenched random media on the limiting free energy statistics. For the semidiscrete directed polymer, when the drifts of a finite number of the Brownian motions forming the quenched random media are critically tuned, the statistics are instead governed by the limiting Baik–Ben Arous–Péché distributions from spiked random matrix theory. For the continuum polymer, the boundary perturbations correspond to choosing the initial data for the stochastic heat equation from a particular class, and likewise for its logarithm—the Kardar‐Parisi‐Zhang equation. The Laplace transform formula we prove can be inverted to give the one‐point probability distribution of the solution to these stochastic PDEs for the class of initial data. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A variant of a stepwise analysis of the elastic properties of a carbon-nanotube-reinforced composite with account of the effect of interphase layers between the nanotubes and the polymer matrix is reported. The preliminary calculation of the elastic constants of a structural element incorporating a nanotube and an interphase layer and the subsequent calculation of independent elastic constants of a composite with such transversely isotropic structural elements oriented in one direction are both performed by using the Mori–Tanaka theory of an equivalent medium. The calculations are carried out for a wide range of ratios between the elastic moduli of the interphase layer and matrix. The elastic constants of a composite with randomly oriented nanotubes are obtained by using the method of orientational averaging.  相似文献   

12.
The author derives the basic equations of the theory of composite elastic media obtained by reinforcing some elastic medium with a large number of linear or planar elastic elements with high strength and deformation resistance. The argument is based on macrostructural considerations. The stress-strain state of each of the reinforcing elements is considered with allowance for interaction with the matrix material. In addition, the "smoothing" principle introduced in [1–3] is applied. This corresponds to approximating the reinforced medium with some equivalent quasi-homogeneous anisotropic medium.The case of a fibrous medium in which the reinforcing elements are rods or filaments [4] is discussed in detail. Allowance for moment effects leads to equations analogous to the equations of the Voight-Cosserat moment theory and its later generalizations. Similar equations are obtained for the case of laminated media, where the reinforcing elements are membranes or plates. On the basis of the viscoelastic analogy [7], the equations of the theory of reinforced media are extended to include the case in which the matrix and/or reinforcing materials are linear viscoelastic.Mekhanika Polimerov, Vol 1, No. 2, pp. 27–37, 1965  相似文献   

13.
The basic geometric and physical relations and resolving equations of the theory of thin and nonthin orthotropic composite shells with account of nonlinear properties and low shear rigidity of their materials are presented. They are derived based on two theories, namely the theory of anisotropic shells employing the Timoshenko or Kirchhoff-Love hypothesis and the nonlinear theory of elasticity and plasticity of anisotropic media in combination with the Lagrange variational principle. The procedure and algorithm for the numerical solution of nonlinear (linear) problems are based on the method of successive approximations, the difference-variational method, and the Lagrange multiplier method. Calculations of the stress-strain state for a spherical shell with a circular opening loaded with internal pressure are presented. The effect of transverse shear strains and physical nonlinearity of the material on the distribution of maximum deflections and circumferential stresses in the shell, obtained according to two variants of the shell theories, is studied. A comparison of the results of the problem solution in linear and nonlinear statements with and without account of the shell shear strains is given. The numerical data obtained for thin and nonthin (medium thick) composite shells are analyzed.  相似文献   

14.
The consistent and correct model of media taking into account scale effects (cohesion and adhesive interactions) is constructed as a special case of the Cosserat's pseudocontinuum model. The variant of the interphase layer theory is elaborated, which includes the following moments: formal mathematical statement, physical constitutive equations, numerical estimations of an interphase layer influence on the stress state and energy density distribution in a composite. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The elastic properties of unidirectionally reinforced composite materials under large deformations are studied. The applied model for deformation of materials is based on the structural macroscopic theory of stiff and soft composites, including micro- and macromechanical levels of analysis of composite media. The properties of unidirectional elastomeric composites are studied in tension and shear in the plane of reinforcement. The microscopic fields in the structural components of composites having poorly compressible and compressible matrices are also analyzed. Changes in the parameters of macroscopic deformation of the composites are examined as functions of the loading parameters and initial conditions of the structure. The evolution of the structural changes in deformed composite materials is described.State Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 1, pp. 29–50, January–February, 1999.  相似文献   

16.
A phenomenological model of wave propagation in a periodically layered elastic media, with linear elastic constituents, which is based on an internal variable theory, is presented; the main result is a system of coupled second- and fourth-order partial differential equations which describe the motion of each constituent and which, in turn, appear to predict the correct qualitative behavior for both the composite (or main) wave and the precursor wave in the laminate.  相似文献   

17.
The present article considers general problems of the theory of the elastic stability of composite media in the presence of finite and small precritical deformations with an arbitrary elastic-potential form. Our investigation was conducted for homogeneous and piecewise-homogeneous anisotropic media. Numerical results were obtained for laminar media. We have elucidated the case in which there is internal loss of stability (in the material structure) for compressible materials with small deformations (plane problem) and for incompressible materials with highly elastic deformations (plane and three-dimensional problems) for the Treloar and Mooney potentials.Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Mekhanika Polimerov, No. 2, pp. 267–275, March–April, 1972.  相似文献   

18.
The possibilities and conditions of correlation are determined for the principal rheological characteristics of single-phase polymer systems measured for one-dimensional shear deformation in steady-state flow regimes, on transition from rest to steady-state flow, and in harmonic vibration regimes. Special significance attaches to the quantitative results of measuring the high-elastic properties of the polymer systems. It is shown that the Lodge theory, describing the flow behavior of high-elastic media, is well-founded in the linear region of deformation, i.e., for the limiting case of shear rates and shear stresses tending to zero, whereas the Mooney-Rivlin-Weissenberg theories are not in accord with the experimental data even in this limiting deformation regime.Topcheiv Institute of Petrochemical Synthesis, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, Vol. 5, No. 1, pp. 164–181, January–February, 1969.  相似文献   

19.
Finite-element methods are considered for numerically solving the equations describing wave propagation in various porous media such as inhomogeneous elastic media, fluid saturated media, composite isotropic inhomogeneous elastic media, composite anisotropic media, etc. Quasi-projection analyses based on an asymptotic expansion to high order of finite-element solutions are given to obtain error estimates in Sobolev spaces of nonpositive index for the approximate solution. Superconvergence phenomena for the finite-element methods under consideration are also investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Based on the results of bending tests on cut glass-fiber-reinforced plastic rings with a longitudinal-circumferential reinforcement, their radial peel strength is evaluated. The effect of the fiber layout on the properties of the rings in the radial direction is investigated. It is shown that their radial tensile strength only slightly depends on the fiber layout but is basically determined by the properties of the polymer interlayer between the fibers. In radial tension, the presence of fibers in the polymer layer leads to a strain concentration, which results in a premature failure of the polymer phase of the composite. The strain-concentration factor cannot be used for an accurate prediction of the breaking stresses or strains of the composite, because of different failure modes of the pure resin and the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号