首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We study relations among special values of zeta functions, invariants of toric varieties, and generalized Dedekind sums. In particular, we use invariants arising in the Todd class of a toric variety to give a new explicit formula for the values of the zeta function of a real quadratic field at nonpositive integers. We also express these invariants in terms of the generalized Dedekind sums studied previously by several authors. The paper includes conceptual proofs of these relations and explicit computations of the various zeta values and Dedekind sums involved.

  相似文献   


2.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

3.
We give a formula for sums of products of hypergeometric Bernoulli numbers. This formula is proved by using special values of multiple analogues of hypergeometric zeta functions.  相似文献   

4.
The Dem?anenko matrices are generalized with the averaged Bernoulli polynomials, and their determinants are computed by the Dedekind-Frobenius formula. This enables us to interpret geometrically the special values at negative integers of Dedekind zeta function of maximal real subfields as well as of imaginary subfields of cyclotomic fields. We utilize the structural properties of the group of reduced residue classes modm and those of (averaged) Bernoulli polynomials, thus appealing to the predominance of Galois theory over the fields themselves, which makes it possible to present very lucid reasoning of the whole picture.  相似文献   

5.
In this paper, we obtain a generalization of an identity due to Carlitz on Bernoulli polynomials. Then we use this generalized formula to derive two symmetric identities which reduce to some known identities on Bernoulli polynomials and Bernoulli numbers, including the Miki identity.  相似文献   

6.
We introduce higher-dimensional Dedekind sums with a complex parameter z, generalizing Zagier's higher-dimensional Dedekind sums. The sums tend to Zagier's higher-dimensional Dedekind sums as z→∞. We show that the sums turn out to be generating functions of higher-dimensional Apostol-Zagier sums which are defined to be hybrids of Apostol's sums and Zagier's sums. We prove reciprocity law for the sums. The new reciprocity law includes reciprocity formulas for both Apostol and Zagier's sums as its special case. Furthermore, as its application we obtain relations between special values of Hurwitz zeta function and Bernoulli numbers, as well as new trigonometric identities.  相似文献   

7.
We have shown recently that the space of modular forms, the space of generalized Dedekind sums, and the space of period polynomials are all isomorphic. In this paper, we will prove, under these isomorphisms, that the Eisenstein series correspond to the Apostol generalized Dedekind sums, and that the period polynomials are expressed in terms of Bernoulli numbers. This gives us a new more natural proof of the reciprocity law for the Apostol generalized Dedekind sums. Our proof yields as a by-product new polylogarithm identities.

  相似文献   


8.
We prove several relations on multiple Hurwitz–Riemann zeta functions. Using analytic continuation of these multiple Hurwitz–Riemann zeta functions, we quote at negative integers Euler's nonlinear relation for generalized Bernoulli polynomials and numbers. As an application, we give a general convolution identity for Bernoulli numbers.  相似文献   

9.
A multiplication theorem for the Lerch zeta function ?(s,a,ξ) is obtained, from which, when evaluating at s=−n for integers n?0, explicit representations for the Bernoulli and Euler polynomials are derived in terms of two arrays of polynomials related to the classical Stirling and Eulerian numbers. As consequences, explicit formulas for some special values of the Bernoulli and Euler polynomials are given.  相似文献   

10.
From a delta series f(t) and its compositional inverse g(t), Hsu defined the generalized Stirling number pair . In this paper, we further define from f(t) and g(t) the generalized higher order Bernoulli number pair . Making use of the Bell polynomials, the potential polynomials as well as the Lagrange inversion formula, we give some explicit expressions and recurrences of the generalized higher order Bernoulli numbers, present the relations between the generalized higher order Bernoulli numbers of both kinds and the corresponding generalized Stirling numbers of both kinds, and study the relations between any two generalized higher order Bernoulli numbers. Moreover, we apply the general results to some special number pairs and obtain series of combinatorial identities. It can be found that the introduction of generalized Bernoulli number pair and generalized Stirling number pair provides a unified approach to lots of sequences in mathematics, and as a consequence, many known results are special cases of ours.  相似文献   

11.
We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli numbers and polynomials. We use this identity to describe some combinatorial relations between these polynomials and generalized factorial sums. As further applications we derive several identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums, Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second kind.  相似文献   

12.
We prove convolution identities of arbitrary orders for Bernoulli and Euler polynomials, i.e., sums of products of a fixed but arbitrary number of these polynomials. They differ from the more usual convolutions found in the literature by not having multinomial coefficients as factors. This generalizes a special type of convolution identity for Bernoulli numbers which was first discovered by Yu. Matiyasevich.  相似文献   

13.
In this paper, we discuss the generalization of the Hecke's integration formula for the Epstein zeta functions. We treat the Epstein zeta function as an Eisenstein series come from a degenerate principal series. For the Epstein zeta function of degree two, Siegel considered the Hecke's formula as the constant term of a certain Fourier expansion of the Epstein zeta function and obtained the other Fourier coefficients as the Dedekind zeta functions with Grössencharacters of a real quadratic field. We generalize this Siegel's Fourier expansion to more general Eisenstein series with harmonic polynomials. Then we obtain the Dedekind zeta functions with Grössencharacters for arbitrary number fields.  相似文献   

14.

Text

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-known properties of these functions. As corollaries many special values of these transcendental functions are expressed as series of higher order Bernoulli numbers.

Video

For a video summary of this paper, please click here or visit http://youtu.be/2i5PQiueW_8.  相似文献   

15.
We present a computer algebra approach to proving identities on Bernoulli polynomials and Euler polynomials by using the extended Zeilberger's algorithm given by Chen, Hou and Mu. The key idea is to use the contour integral definitions of the Bernoulli and Euler numbers to establish recurrence relations on the integrands. Such recurrence relations have certain parameter free properties which lead to the required identities without computing the integrals. Furthermore two new identities on Bernoulli numbers are derived.  相似文献   

16.
By using partial differential equations (PDEs) of the generating functions for the unification of the Bernoulli, Euler and Genocchi polynomials and numbers, we derive many new identities and recurrence relations for these polynomials and numbers. In [33], Srivastava et al. defined a unified presentation of certain meromorphic functions related to the families of the partial zeta type functions. By using these functions, we construct p-adic functions which are related to the partial zeta type functions. By applying these p-adic function, we construct unified presentation of p-adic L-functions. These functions give us generalization of the Kubota–Leopoldt p-adic L-functions, which are related to the Bernoulli numbers and the other p-adic L-functions, which are related to the Euler numbers and polynomials. We also give some remarks and comments on these functions.  相似文献   

17.
Ustinov  A. V. 《Mathematical Notes》2002,71(5-6):851-856
In this paper, we prove a discrete analog of Euler's summation formula. The difference from the classical Euler formula is in that the derivatives are replaced by finite differences and the integrals by finite sums. Instead of Bernoulli numbers and Bernoulli polynomials, special numbers Pn and special polynomials Pn(x) introduced by Korobov in 1996 appear in the formula.  相似文献   

18.
The main purpose of this paper is to prove an identity of symmetry for the higher order Bernoulli polynomials. It turns out that the recurrence relation and multiplication theorem for the Bernoulli polynomials which discussed in [F.T. Howard, Application of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995) 157-172], as well as a relation of symmetry between the power sum polynomials and the Bernoulli numbers developed in [H.J.H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001) 258-261], are all special cases of our results.  相似文献   

19.
Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki's and Matiyasevich's identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.  相似文献   

20.
An infinite family of functional equations in the complex plane is obtained for Dirichlet series involving harmonic numbers. Trigonometric series whose coefficients are linear forms with rational coefficients in hyperharmonic numbers up to any order are evaluated via Bernoulli polynomials, Gauss sums, and special values of L-functions subject to the parity obstruction. This in turn leads to new representations of Catalan’s constant, odd values of the Riemann zeta function, and polylogarithmic quantities. Consequently, a dichotomy result is deduced on the transcendentality of Catalan’s constant and a series with hyperharmonic terms. Moreover, making use of integrals of smooth functions, we establish Diophantine-type approximations of real numbers by values of an infinite family of Dirichlet series built from representations of harmonic numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号