首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using beta-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.  相似文献   

2.
A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2‐bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein‐imprinted poly(N‐isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy of the cross‐sections of imprinted monoliths confirmed the formation of dense poly(N‐isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this “smart” imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH.  相似文献   

3.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

4.
A poly(glycidyl methacrylate-co-acrylamide-co-ethylene dimethacrylate) monolith and a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith were prepared in fused silica capillaries (100 μm ID) and modified with monomeric avidin using the glutaraldehyde technique. The biotin binding capacity of monolithic affinity columns with immobilized monomeric avidin (MACMAs) was determined by fluorescence spectroscopy using biotin (5-fluorescein) conjugate, as well as biotin- and fluorescein-labeled bovine serum albumin (BSA). The affinity columns were able to bind 16.4 and 3.7 μmol biotin/mL, respectively. Columns prepared using the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith retained 7.1 mg BSA/mL, almost six times more than commercially available monomeric avidin beads. Protocols based on MALDI-TOF mass spectrometry monitoring were optimized for the enrichment of biotinylated proteins and peptides. A comparison of enrichment efficiencies between MACMAs and commercially available monomeric avidin beads yielded superior results for our novel monolithic affinity columns. However, the affinity medium presented in this work suffers from a significant degree of nonspecific binding, which might hamper the analysis of more complex mixtures. Further modifications of the monolith’s surface are envisaged for the future development of monoliths with improved enrichment characteristics.  相似文献   

5.
A polyethyleneimine (PEI) modified ion-exchanger was prepared based on poly(methacrylate-co-ethylene dimethacrylate) monolith cast in 100 mm x 4.6 mm I.D. stainless steel tube with heptane as the porogenic solvent at 65 degrees C for 12 h. The pores larger than 500 nm presented 85% of total pore volume of PEI monolith and provided the better permeability for separation. Bovine serum albumin (BSA) binding capacity on the column was enhanced with increasing the molecular weight of PEI, indicated that the brush ligand emanated from the surface and captured more protein by multiple binding sites. Titration experiment as well as BSA retention versus the pH of mobile phase showed that the monolith exhibited weak ion-exchange property, and recovered BSA on the monolith reached 97% when NaCl content in mobile phase was higher than 0.5 M. Frontal analysis and gradient elution of BSA indicated that PEI monolith provided the rapid mass transfer in chromatographic procedure, which made the dynamic binding capacities as well as column efficiency keep as constants at high operating flow rate. Fast separation of three mode proteins mixture (lysozyme, hemoglobin and BSA) on the monolith was achieved within 3 min at velocity of 1445 cm/h. This demonstrated the potential of PEI monolith for the rapid analysis and separation of proteins.  相似文献   

6.
Monodisperse iron oxide nanocrystals and organic solvents were utilized as coporogens in monolithic poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) capillary columns to afford stationary phases with enhanced electrochromatographic performance of small molecules. While the conventional monoliths using organic solvents only as a porogen exhibited poor resolution (Rs) <1.0 and low efficiency of 40 000–60 000 plates/m, addition of a small amount of nanocrystals to the polymerization mixture provided increased resolution (Rs > 3.0) and high efficiency ranged from 60 000 to 100 000 plates/m at the same linear velocity of 0.856 mm/s. It was considered that the mesopores introduced by the nanocrystals played an important role in the improvement of the monolith performance. This new strategy expanded the application range of the hydrophobic monoliths in the separation of polar alkaloids and narcotics. The successful applications demonstrated that the glycidyl methacrylate based monoliths prepared by using nanocrystal template are a good alternative for enhanced separation efficiency of small molecules.  相似文献   

7.
As low abundance is the great obstacle for glycoprotein analysis, the development of materials with high efficiency and selectivity for glycoprotein enrichment is a prerequisite in glycoproteome research. Herein, we report a new kind of hydrophilic boronate affinity monolith by attaching 4‐mercaptophenylboronic acid (MPBA) with 2‐mercaptoethylamine (MPA) on the gold nanoparticle‐modified poly(glycidyl methacrylate‐co‐poly(ethylene glycol) diacrylate)) monolith for glycoprotein enrichment. With poly(ethylene glycol) diacrylate as the cross‐linker and the further modification of gold nanoparticles, the matrix has advantages of good hydrophilicity and enhanced surface area, which are beneficial to improve the enrichment selectivity and efficiency for glycoproteins. The attachment of MPBA and MPA provide intramolecular B?N coordination, which could further enhance the specificity of glycoprotein capture. Such a boronate affinity monolith was applied to enrich horseradish peroxidase (HRP) from the mixture of HRP and bovine serum albumin (BSA), and high selectivity was obtained even at a mass ratio of 1:1000. In addition, the binding capacity of ovalbumin on such monolith reached 390 μg g?1. Furthermore, the average recovery of HRP on the prepared affinity monoliths was (84.8±1.9) %, obtained in three times enrichment with the same column. Finally, the boronate affinity monolith was successfully applied for the human‐plasma glycoproteome analysis. As a result, 160 glycoproteins were credibly identified from 9 μg of human plasma, demonstrating the great potential of such a monolith for large‐scale glycoproteome research.  相似文献   

8.
Novel porous polymer monoliths grafted with poly{oligo[(ethylene glycol) methacrylate]‐co‐glycidyl methacrylate} brushes were fabricated via two‐step atom‐transfer radical polymerization and used as a trypsin‐based reactor in a continuous flow system. This is the first time that atom‐transfer radical polymerization technique was utilized to design and construct polymer monolith bioreactor. The prepared monoliths possessed excellent permeability, providing fast mass transfer for enzymatic reaction. More importantly, surface properties, which were modulated via surface‐initiated atom‐transfer radical polymerization, were found to have a great effect on bioreactor activities based on Michaelis–Menten studies. Furthermore, three model proteins were digested by the monolith bioreactor to a larger degree within dramatically reduced time (50 s), about 900 times faster than that by free trypsin (12 h). The proposed method provided a platform to prepare porous monoliths with desired surface properties for immobilizing various enzymes.  相似文献   

9.
Graphene oxide (GO) nanosheets were incorporated into an organic polymer monolith containing 3‐acrylamidophenylboronic acid (AAPBA) and pentaerythritol triacrylate (PETA) to form a novel monolithic stationary phase for CEC. The effects of the mass ratio of AAPBA/PETA, the amount of GO, and the volume of porogen on the morphology, permeability and pore properties of the prepared poly(AAPBA‐GO‐PETA) monoliths were investigated. A series of test compounds including amides, alkylbenzenes, polycyclic aromatics, phenols, and anilines were used to evaluate and compare the separation performances of the poly(AAPBA‐GO‐PETA) and the parent poly(AAPBA‐co‐PETA) monoliths. The results indicated that incorporation of GO into monolithic column exhibited much higher resolutions (>1.5) and column efficiency (62 000 ~ 110 000 plates/m for toluene, DMF, formamide, and thiourea) than the poly(AAPBA‐co‐PETA). The successful application in isocratic separation of peptides suggests the potential of the GO incorporated monolithic column in complex sample analysis. In addition, the reproducibility and stability of the prepared poly(AAPBA‐GO‐PETA) monolith was assessed. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of this monolith for alkylbenzenes’ retention were satisfactory with the RSDs less than 1.8% (n = 5), 3.7% and 5.6% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.  相似文献   

10.
With the aim of developing efficient flow-through microreactors for high-throughput organic synthesis, in this work, microreactors were fabricated by chemically immobilizing palladium-, nickel-, iron-, and copper-based catalysts onto ligand-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) [poly(GMA-co-EDMA)] monoliths, which were prepared inside a silicosteel tubing (10 cm long with an inner diameter of 1.0 mm) and modified with several ligands including 5-amino-1,10-phenanthroline (APHEN), iminodiacetic acid (IDA), and iminodimethyl phosphonic acid (IDP). The performance of the resulting microreactors in Suzuki−Miyaura cross-coupling reactions was evaluated, finding that the poly(GMA-co-EDMA) monolith chemically modified with 5-amino-1,10-phenanthroline as a binding site for the palladium catalyst provided an excellent flow-through performance, enabling highly efficient and rapid reactions with high product yields. Moreover, this monolithic microreactor maintained its good activity and efficiency during prolonged use.  相似文献   

11.
Sponge-like material was utilized as novel chromatographic media for high throughput analyses. The pore size of the sponge-like material was several dozen micrometer, and was named spongy monolith because it consists of continuous structured copolymers, which was made of poly(ethylene-co-vinyl acetate), such as monolithic materials including silica monoliths and organic polymer monoliths. The spongy monolith was packed into a stainless steel column (100 mm × 4.6 mm I.D.) and evaluated in liquid chromatography (LC) with an on-line column-switching LC concentration system. The results indicate that the packed column could be used with high flow rates and low back pressure (9.0 mL/min at 0.5 MPa). Furthermore, bisphenol A was quantitatively recovered by on-line column-switching LC concentration with the spongy monolithic column. Additionally, the adsorption capacity and physical strength of the media was enhanced via chemical modification of spongy monoliths using glycerol dimethacrylate. The results compared with original spongy monolith demonstrated that a higher adsorption capacity was achieved on a shorter column, and a stable low back pressure was obtained at high throughput elution even with a longer column.  相似文献   

12.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

13.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   

14.
Ou J  Zhang Z  Lin H  Dong J  Wu M  Zou H 《Electrophoresis》2012,33(11):1660-1668
Hydrophobic organic-inorganic hybrid monolithic columns were synthesized via thermally initiated free radical polymerization with the confines of 75 μm id capillary using a polyhedral oligomeric silsesquioxane (POSS) reagent containing eight or more methacrylate groups as the crosslinker. Three organic functional monomers, butyl methacrylate (BuMA), lauryl methacrylate (LMA) and methacrylic acid (MAA), were selected and copolymerized with the POSS in the presence of 1-propanol and 1,4-butanediol to prepare the poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths, respectively. The 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was copolymerized as ionizable monomer into the poly(POSS-co-BuMA) and poly(POSS-co-LMA) for the generation of EOF in capillary electrochromatography (CEC). A hybrid poly(POSS-co-LMA-co-MAA) monolith was also similarly prepared by copolymerizing ternary monomers of POSS, LMA, and MAA, and compared with poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths. The resulting four kinds of POSS-contained hybrid monoliths exhibited good permeability and mechanical stability. Their column efficiencies were evaluated by the separation of alkylbenzene homologues and polar compounds in CEC. The results indicated that the highest efficiencies of 194,100 and 102,100 theoretical plates per meter for thiourea and benzene were obtained on the poly(POSS-co-LMA-co-MAA) monolith. Additionally, the poly(POSS-co-LMA-co-MAA) monolith exhibited better selectivity for separation of polar compounds than those of other hybrid monoliths.  相似文献   

15.
An affinity monolith based on silica and containing immobilized alpha(1)-acid glycoprotein (AGP) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or monoliths based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of AGP in the silica monolith was 18% higher than that obtained with silica particles and 61% higher than that measured for a GMA/EDMA monolith. The higher surface area of the silica monolith gave materials that contained 1.5- to 3.6-times more immobilized protein per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the AGP silica monolith were evaluated by injecting two chiral analytes onto this column (i.e., R/S-warfarin and R/S-propranolol). In each case, the AGP silica monolith gave higher retention plus better resolution and efficiency than AGP columns containing silica particles or a GMA/EDMA monolith. The AGP silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with AGP as a chiral stationary phase.  相似文献   

16.
Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35 %, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC4D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15 % (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.  相似文献   

17.
A novel polymeric ionic liquid grafted porous polymer monolith has been facilely fabricated for mixed‐mode chromatography. The column is prepared from poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith through hydrolyzation of the epoxy moieties into hydroxyl groups, followed by "grafting from" polymerization of ionic liquid of 1‐vinyl‐3‐butylimidazolium chloride. Successful modification is characterized by scanning electron microscope, infrared spectroscopy, elemental analysis and mercury intrusion porosimetry. The HPLC performance of developed column is evaluated by separating acidic vitamin B analytes, neutral steroids and basic aromatic amines in mixed‐mode chromatography on a single column, respectively. The ionic liquid affords the monolith with both enhanced separation ability and improved column efficiency.  相似文献   

18.
Monolithic capillary columns with surface bound lectin affinity ligands were introduced for performing lectin affinity chromatography (LAC) by nano-liquid chromatography (nano-LC). Two kinds of polymethacrylate monoliths were prepared, namely poly(glycidyl methacrylateco-ethylene dimethacrylate) and poly(glycidyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) to yield neutral and cationic macroporous polymer, respectively. Two lectins including concanavalin (Con A) and wheat germ agglutinin (WGA) were immobilized onto the monolithic capillary columns. The neutral monoliths with immobilized lectins exhibited lower permeability under pressure driven flow than the cationic monoliths indicating that the latter had wider flow-through pores than the former. Both types of monoliths with immobilized lectins exhibited strong affinity toward particular glycoproteins and their oligosaccharide chains (i.e., glycans) having sugar sequences recognizable by the lectin. Due to the strong binding affinity, the monoliths with surface bound lectins allowed the injection of relatively large volume (i.e., several column volumes) of dilute samples of glycoproteins and glycans thus allowing the concentration of the glycoconjugates and their subsequent isolation and detection at low levels (approximately 10(-8) M). To further exploit the lectin monoliths in the isolation of glycoconjugates, two-dimensional separation schemes involving LAC in the first dimension and reversed-phase nano-LC in the second dimension were introduced. The various interrelated methods established in this investigation are expected to play a major role in advancing the sciences of "nano-glycomics".  相似文献   

19.
Microwave irradiation can provide a viable alternative to the traditional means such as ultraviolet light and thermal initiation for the preparation of monolithic capillary columns. Polystyrene-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The column permeability, electrophoretic and chromatographic behavior were evaluated using pressure-assisted capillary electrochromatography (pCEC), capillary electrochromatography (CEC) and low pressure liquid chromatography (LPLC). With an optimal monolithic material, the largest theoretical plates for preparing the column could be close to 18,000 plates/m for thiourea in the mode of pCEC. Furthermore, the influence of the composition of the porogenic solvents (toluene/isooctane) on the morphology of organic-based monoliths [poly(styrene-divinylbenzene-methacrylic acid)] was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. The monoliths which were prepared with a high content of isooctane had a bigger pore size and better permeability, and hence resulted in a faster separation.  相似文献   

20.
Xiaoyi Wei  Li Qi  Gengliang Yang 《Talanta》2009,79(3):739-1198
A novel modified monolithic column with pH-responsive polymer chains was prepared by grafting methacrylic acid onto the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith. The grafting polymerization was achieved in an in situ manner which was performed by pumping methacrylic acid directly through an acidic hydrolysis monolithic column using potassium peroxydisulfate initiated free-radical polymerization. The grafted monolithic column was demonstrated to be the pH-responsive to the pore structure and the chromatographic characterization. The permeability of the column and the retention factors of five benzene homologues decreased due to the conformational changes of the polymer chains when the pH of mobile phase increased from 4.5 to 7.5. Furthermore, the modified monolithic column was used as the pH-responsive stationary phase and exhibited an excellent separation of four basic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号