首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The synthesis, characterization, and PGSE ((1)H and (19)F) NMR diffusion studies on the cationic [(eta(6)-arene)Mn(CO)(3)][X] (arene = anisole, 4-chloroanisole, and 1,3,5-trimethoxybenzene; X = BPh(4) and BArF) are reported. The tetraphenyl borate complexes of anisole and 4-chloroanisole show surprisingly strong ion pairing in dichloromethane solution, whereas the BArF salts do not. (1)H,(1)H-NOESY data support this anion selectivity. In chloroform solution one finds the usual strong ion pairing for both anions. The solid-state structure of [(eta(6)-1,3,5-trimethoxybenzene)Mn(CO)(3)][BPh(4)] has been determined. (13)C NMR and IR data for the new complexes are reported. The observed IR frequencies are higher for the BArF complexes than for the BPh(4) complexes.  相似文献   

2.
Hydride abstraction from C(5)Me(5)(CO)(2)Re(eta(2)-PhC triple bond CCH(2)Ph) (1) gave a 3:1 mixture of eta(3)-propargyl complex [C(5)Me(5)(CO)(2)Re(eta(3)-PhCH-C triple bond CPh)][BF(4)] (5) and eta(2)-1-metalla(methylene)cyclopropene complex [C(5)Me(5)(CO)(2)Re(eta(2)-PhC-C=CHPh)][BF(4)] (6). Observation of the eta(2)-isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C(3)-aryl ring. Interconversion of eta(3)-propargyl and eta(2)-1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp (1)H NMR resonances at about -50 degrees C. Protonation of the alkynyl carbene complex C(5)Me(5)(CO)(2)Re=C(Ph)C triple bond CPh (22) gave a third isomer, the eta(3)-benzyl complex [C(5)Me(5)(CO)(2)Re[eta(3)(alpha,1,2)-endo,syn-C(6)H(5)CH(C triple bond CC(6)H(5))]][BF(4)] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the eta(3)-benzyl isomer 23 with 5 and 6.  相似文献   

3.
The reaction of the tricarbadecaboranyl anion, 6-Ph-nido-5,6,9-C(3)B(7)H(9)(-), with M(CO)(5)Br [M = Mn, Re] or [(eta(6)-C(10)H(8))Mn(CO)(3)(+)]BF(4)(-) yielded the half-sandwich metallatricarbadecaboranyl analogues of (eta(5)-C(5)H(5))M(CO)(3) [M = Mn, Re]. For both 1,1,1-(CO)(3)-2-Ph-closo-1,2,3,4-MC(3)B(7)H(9) [M = Mn (2) and Re (3)], the metal is eta(6)-coordinated to the puckered six-membered open face of the tricarbadecaboranyl cage. Reactions of 2 and 3 with isocyanide at room temperature produced complexes 8-(CNBu(t))-8,8,8-(CO)(3)-9-Ph-nido-8,7,9,10-MC(3)B(7)H(9) [M = Mn (4), Re (5)], having the cage eta(4)-coordinated to the metal. Photolysis of 4 and 5 then resulted in the loss of CO and the formation of 1-(CNBu(t))-1,1-(CO)(2)-2-Ph-closo-1,2,3,4-MC(3)B(7)H(9) [M = Mn, Re (6)], where the cage is again eta(6)-coordinated to the metal. Reaction of 2 and 3 with 1 equiv of phosphine at room temperature produced the eta(6)-coordinated monosubstituted complexes 1,1-(CO)(2)-1-P(CH(3))(3)-2-Ph-closo-1,2,3,4-MC(3)B(7)H(9) [M = Mn (7), Re (9)] and 1,1-(CO)(2)-1-P(C(6)H(5))(3)-2-Ph-closo-1,2,3,4-MC(3)B(7)H(9) [M = Mn (8), Re (10)]. NMR studies of these reactions at -40 degrees C showed that substitution occurs by an associative mechanism involving the initial formation of intermediates having structures similar to those of the eta(4)-complexes 4 and 5. The observed eta(6)-eta(4) cage-slippage is analogous to the eta(5)-eta(3) ring-slippage that has been proposed to take place in related substitution reactions of cyclopentadienyl-metal complexes. Reaction of 9 with an additional equivalent of P(CH(3))(3) gave 8,8-(CO)(2)-8,8-(P(CH(3))(3))(2)-9-Ph-nido-8,7,9,10-ReC(3)B(7)H(9) (11), where the cage is eta(4)-coordinated to the metal. Photolysis of 11 resulted in the loss of CO and the formation of the disubstituted eta(6)-complex 1-CO-1,1-(P(CH(3))(3))(2)-2-Ph-closo-1,2,3,4-ReC(3)B(7)H(9) (12).  相似文献   

4.
1-Triphenylphosphoniobenzo[c]phospholide 1 reacts with [M(CO)(5)Br] (M = Mn, Re) and [Mn(CO)(3)(naphthalene)][BF(4)] to give complexes cis-[M(CO)(4)(1)Br] (5 a,b) and [Mn(CO)(3)(1)][BF(4)] (6 a[BF(4)]), respectively, featuring eta(1)(P)- and eta(5)(pi)-coordination of the phosphole ring. The corresponding reactions with [M(2)(CO)(10)] proceed with conservation of the metal-metal bond and yield, depending on the reaction temperature, dinuclear complexes [M(2)(CO)(8)(1)] (M=Mn, 7 a) or [M(2)(CO)(6)(1)(2)] (M=Mn, Re, 8 a,b) with mu(2)-bridging eta(1)(P):eta(2)(Pdbond;C) coordination of the phosphole moiety. All complexes formed were characterized by spectroscopic data; 5 b, 6 a[BF(4)], and 8 a,b were characterized by X-ray diffraction studies as well. The structural and (31)P NMR data of the dinuclear manganese complex 8 a suggest that the interaction between the metal atoms and the eta(2)-bound Pdbond;C double bond moieties is dominated by the L-->M charge-transfer contribution; this hints at a very low back-donation ability of the central M(2)(CO)(6) fragment. Investigation of the reactions of the Mn complexes 6 a and 8 a with Mg or ferrocenium hexafluorophosphate ([Fc][PF(6)]), respectively, revealed that the chemically reversible mutual interconversion between both species was feasible. Likewise, oxidation of the rhenium complex 8 b with [Fc][PF(6)] gave spectroscopic evidence for the formation of a Re analogue of 6 a. Electrochemical studies suggested that the oxidation 8 a-->2 6 a involves two consecutive single-electron-transfer steps, the first of which is electrochemically reversible and produces a metastable radical cation that is detectable by ESR spectroscopy. The mutual interconversion between 6 a and 8 a represents the first case of a reversible coordination isomerization of a phosphaarene that is triggered by a redox process and might stimulate further studies directed at the use of dinuclear phosphaarene complexes in redox-catalysis.  相似文献   

5.
Photolysis of (eta(6)-arene)Cr(CO)(3) complexes and HSnPh(3) in aromatic solvents at room temperature has led to two classes of complexes: hydrido stannyl compounds containing the eta(2)-H-SnPh(3) ligand and bis(stannyl) compounds containing two SnPh(3) ligands. The ratio between the two complexes simultaneously produced depends on the choice of the arene. Complexes with different arenes (mesitylene, toluene, benzene, fluorobenzene, and difluorobenzene) have been obtained and characterized including X-ray structures for (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(H)(SnPh(3)) (1a), (eta(6)-C(6)H(3)(CH(3))(3))Cr(CO)(2)(SnPh(3))(2) (1b), (eta(6)-C(6)H(5)F)Cr(CO)(2)(SnPh(3))(2) (4b), and (eta(6)-C(6)H(4)F(2))Cr(CO)(2)(SnPh(3))(2) (5b). X-ray crystallography of the last three compounds has given the following results: 1b, monoclinic, space group P2(1)/c (No. 14), a = 13.905(4) ?, b = 18.499(2) ?, c = 17.708(2) ?, Z = 4, V = 4285(1) ?(3); 4b, orthorhombic, space group Pca2(1) (No. 29), a = 16.717(2) ?, b = 18.453(2) ?, c = 25.766(2) ?, Z = 8, V = 7948(2) ?(3); 5b, monoclinic, space group P2(1)/c (No. 14), a = 13.756(2) ?, b = 18.560(2) ?, c = 17.159(2) ?, Z = 4, V = 4372(2) ?(3). The relatively high J((119)Sn-Cr-H) and J((117)Sn-Cr-H) values as well as the X-ray structural data provide evidence for the existence of three-center two-electron bonds in the hydrido stannyl complexes. The (1)H NMR data of the complexes are compared with chromium-arene bond distances, and a sensible trend is observed and discussed.  相似文献   

6.
The reaction of AlMe(3) with (eta(4)-tetraphenylcyclopentadienone)Ru(CO)(3) leads to rapid and quantitative formation of an adduct arising from coordination of the enone oxygen to aluminium, which undergoes alkylation at the Ru(CO)(3) moiety to give (eta(5)-C(4)Ph(4)C(OAlMe(2)))Ru(CO)(2)(COMe) concomitant with a change of hapticity of the dienone ligand.  相似文献   

7.
The bimetallic complexes [M(CO)(3)](2)(mu:eta(5):eta(5)-Pn) (Pn = pentalene, C(8)H(6); M = Mn, Re) have been synthesized and characterized crystallographically; the Mn compound was isolated as solely the anti-isomer, while the Re analogue was formed as a mixture of anti- and syn-isomers. [Mn(CO)(3)](2)(mu:eta(5):eta(5)-Pn) may be reduced chemically to its mono- and dianions; the mixed-valence Mn(I)/Mn(0) monoanion is shown by ESR, vibrational, and electronic spectroscopies to be a Robin-Day class III system with an exceptionally large electronic coupling between the metal centers.  相似文献   

8.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

9.
The reaction of [Mn(CN)L'(NO)(eta(5)-C(5)R(4)Me)] with cis- or trans-[MnBrL(CO)(2)(dppm)], in the presence of Tl[PF(6)], gives homobinuclear cyanomanganese(i) complexes cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), linkage isomers of which, cis- or trans-[(dppm)(CO)(2)LMn(micro-CN)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), are synthesised by reacting cis- or trans-[Mn(CN)L(CO)(2)(dppm)] with [MnIL'(NO)(eta(5)-C(5)R(4)Me)] in the presence of Tl[PF(6)]. X-Ray structural studies on the isomers trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-NC)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) and trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-CN)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) show nearly identical molecular structures whereas cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) and cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) differ, effectively in the N- and C-coordination respectively of two different optical isomers of the pseudo-tetrahedral units (NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) and (CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) to the octahedral manganese centre. Electrochemical and spectroscopic studies on [(dppm)(CO)(2)LMn(micro-XY)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) show that systematic variation of the ligands L and L', of the cyclopentadienyl ring substituents R, and of the micro-CN orientation (XY = CN or NC) allows control of the order of oxidation of the two metal centres and hence the direction and energy of metal-metal charge-transfer (MMCT) through the cyanide bridge in the mixed-valence dications. Chemical one-electron oxidation of cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) with [NO][PF(6)] gives the mixed-valence dications trans-[(dppm)(CO)(2)LMn(II)(micro-NC)Mn(I)L'(NO)(eta(5)-C(5)R(4)Me)](2+) which show solvatochromic absorptions in the electronic spectrum, assigned to optically induced Mn(I)-to-Mn(II) electron transfer via the cyanide bridge.  相似文献   

10.
Reaction of (eta5-Cp)(CO)2M=P=C(SiMe3)2 4a (M = Mo) and 4b (M = W) with (eta5-Cp*)(CO)2Fe-As=C(NMe2)2 5 affords the eta3-1-arsa-2-phosphaallyl complexes [(eta5-Cp*)(CO)2Fe-AsPC(SiMe3)2]M(CO)2(eta5-Cp) 6a and 6b, the molecular structures of which were determined by X-ray analyses.  相似文献   

11.
Reaction of (PCP)Ru(CO)(Cl) (1) with NaBAr'4 yields the bimetallic product [[(PCP)Ru(CO)](2)(mu-Cl)][BAr'4] (2). The monomeric five-coordinate complexes [(PCP)Ru(CO)(eta1-ClCH2Cl)][BAr'4] (3) and [(PCP)Ru(CO)(eta1-N2)][BAr'4] (4) are synthesized upon reaction of (PCP)Ru(CO)(OTf) (6) with NaBAr'4 in CH2Cl2 or C6H5F, respectively. The solid-state structures of 2, 3, and 4 have been determined by X-ray diffraction studies of single crystals. The reaction of 3 with PhCHN2 or PhCCH affords carbon-carbon coupling products involving the aryl group of the PCP ligand in transformations that likely proceed via the formation of Ru carbene or vinylidene intermediates. Density functional theory and hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the bonding of weak bases to the 14-electron fragment [(PCP)Ru(CO)]+ and the energetics of different isomers of the product carbene and vinylidene complexes.  相似文献   

12.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

13.
Reactions of (eta5-C5Me4R)(CO)2(MeCN)WMe (R = Me, Et) with HPh2SiCCtBu gave the novel alkynyl-bridged W-Si complexes, (eta5-C5Me4R)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) (R = Me, Et), whose alkynyl ligands bridge the tungsten and silicon atoms in an eta1:eta2-coordination mode. The structures of these complexes were fully characterized, including X-ray crystallography. Treatment of (eta5-C5Me5)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) with acetone resulted in acetone insertion into the silicon-alkynyl linkage followed by intramolecular C-H activation of the tBu group to give the chelate-type alkyl-alkene complex, (eta5-C5Me5)(CO)2W(eta1:eta2-CH2CMe2C=CHSiPh2OCMe2).  相似文献   

14.
The synthesis of a series of chiral cyclomanganated 2-[(eta 6-phenyl)-Cr(CO)3]pyridine complexes derived from (-)-beta-pinene enables, by a "spirogenic transformation", the preparation of four different chiral helical heterobimetallic syn-facial complexes or Cr0/Mn1-spiralenes, among which two possess a right-handed P molecular helicity and two other a left-handed M one. These organometallic helical molecules are synthesised by applying two different methods to the chiral cyclomanganated (eta 6-arene)tricarbonylchromium substrates. The first method is the so-called "Fischer route" which involves a sequential addition of PhLi and MeOTf. The second method based on reaction of the cyclomanganated complex with diphenyldiazomethane which has been tested on achiral bimetallic substrates is a reasonable neutral alternative to the "Fischer methodology" for the synthesis of Cr0/Mn1-spiralenes. The crystal structure of one of these heterobimetallic chiral helical compounds serves as a starting point in the configurational and structural assessment of the synthesised chiral (eta 6-arene)tricarbonylchromium complexes. Application of the "Fischer route" to a cyclomanganated chiral 2-phenylpyridine generates a single chiral eta 3-benzylic complex--or Mn1-spiralene--bearing a left-handed M helicity which has been characterized by X-ray diffraction analysis. Circular dichroic spectroscopic measurements underline the predominant contribution of the chiral and chirally induced aromatic chromophores to the sign of the Cotton effects and confirm the helical configurations of the considered heterobimetallic species.  相似文献   

15.
1,3-Diaryl-4H-cyclopenta[c]thiophenes are efficiently prepared from 1,2-diaroylcyclopentadienes by use of Lawesson's reagent. eta5-Cyclopenta[c]thienyl complexes, [Mn(eta5-SC7H3-1,3-R2)(CO)3] (R = Me, Ph), are prepared in high yield by ligand substitution reactions of [MnBr(CO)5] with [SnMe3(SC7H3-1,3-R2)]. Alternatively, thiation with P4S10/NaHCO3 converts [Mn{eta5-1,2-C5H3(COR)2)(CO)3] to [Mn(eta5-SC7H3-1,3-R2)(CO)3] (R = Ph, 4-tolyl, 4-MeOC6H4, benzo[2,3-b]thienyl). The molecular structures of complexes with R = Me, Ph show planar eta5-cyclopenta[c]thienyl ligands, with the manganese atom slightly displaced away from the ring-fusion bond.  相似文献   

16.
A simple procedure for the preparation of cationic arene complexes of Ni(II) of composition [Ni(eta 6-ArX)(eta 3-C3H5)]+[BAr'4]- (X = OH, H) is reported. These compounds are shown to behave as highly active catalysts for the polymerization of 1,3-butadiene and styrene.  相似文献   

17.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

18.
Dihapto-coordinated naphthalene complexes of the form TpRe(CO)(L)(eta(2)-naphthalene) (L = PMe(3), pyridine, or 1-methylimidazole) undergo electrophilic addition with dimethoxymethane and with various Michael acceptors to generate 1H-naphthalenium species. These naphthalenium complexes undergo intra- or intermolecular nucleophilic addition reactions with stabilized enolates, silyl ketene acetals, or enols to form the corresponding dihydronaphthalene complexes. Oxidative decomplexation generates the free dihydronaphthalene. When a resolved form of the rhenium dearomatization agent is used, these reactions can be performed enantioselectively. DFT calculations provide a useful guide in explaining the observed stereochemistry. Depending on reaction conditions, a Michael-Michael ring-closure sequence (MIMIRC) or a net [2 + 4] cycloaddition with the bound naphthalene is also observed, and the corresponding tricyclic molecules can be removed from the metal in high yield.  相似文献   

19.
Ansa-bridged eta(5)-cyclopentadienyl molybdenum and tungsten tricarbonyl complexes of formula [M(eta(5)-C(5)H(4)(CH(2))(3)-eta(1)-CH(2))(CO)(3)] (M=Mo or W) were synthesized and the X-ray crystal structure of the tungsten complex is reported. In the epoxidation of cyclooctene the molybdenum compound shows a high catalytic activity, approaching the observed activities for the most reactive unbridged complexes of composition CpMo(CO)(3)X (X=Cl, CH(3)). The activity of the tungsten complex is also amongst the highest catalytic activities for the olefinic epoxidation of complexes with the composition CpW(CO)(3)X and WO(2)X(2)L(2), reported so far. The low ring strain of the ansa-bridged system improves the stability of the complexes under oxidative conditions considerably in comparison to derivatives with a shorter bridge and therefore paves the way to introduction of chirality in these systems.  相似文献   

20.
As starting materials for heterobimetallic complexes, [RuCp(PPh(3))CO(PPh(2)H)]PF(6) and [RuCp(PPh(3))CO(eta(1)-dppm)]PF(6) were prepared from RuCp(PPh(3))(CO)Cl. In the course of preparing [RuCp(eta(2)-dppm)(eta(1)-dppm)]Cl from RuCp(Ph(3)P)(eta(1)-dppm)Cl, the new monomer RuCpCl(eta(1)-dppm)(2) was isolated. The uncommon coordination mode of the two monodentate bis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) ?, b = 14.869(2) ?, c = 15.447(2) ?, alpha = 84.63(1) degrees, beta = 70.55(1) degrees, gamma = 72.92(1) degrees, V = 2378.7(5) ?(3), d(calc) = 1.355 g cm(-)(3) (298 K), triclinic, P&onemacr;, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh(3))Cl(&mgr;-dppm)PtCl(2), RuCpCl(&mgr;-dppm)(2)PtCl(2), and [RuCp(PPh(3))CO(&mgr;-dppm)PtCl(2)]PF(6) each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO)(3)(&mgr;-dppm)(2)Pt(H)]PF(6) and [MoCp(CO)(2)(&mgr;-PPh(2))(&mgr;-H)Pt(PPh(3))(MeCN)]PF(6) were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号