首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.  相似文献   

2.
Summary We report about interaction processes between palladium (Pd) and tin dioxide (SnO2) studied with various surface spectroscopic techniques. Total sputter yields necessary for absolute depth calibration in SIMS are determined for SnO2. Clustering of palladium occurs at low temperatures. Small changes in the XPS relative core level intensities of Pd and Sn allow to determine cluster sizes. Oxidation of Pd in the presence of oxygen at T470 K is a prerequisite for diffusion of Pd2+ ions into SnO2 layers. The latter process is confirmed and described quantitatively by evaluating the SIMS and SNMS measurements.  相似文献   

3.
A simple model which describes the essential features commonly observed in a molecular sputter depth profile is presented. General predictions of the dependence of measured molecular ion signals on the primary ion fluence are derived for the specific case where a mass spectrometric technique such as SIMS or secondary neutral mass spectrometry (SNMS) is used to analyze the momentary surface. The results are compared with recent experimental data on molecular depth profiles obtained by cluster‐ion‐initiated SIMS of organic overlayers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Summary Sputter-deposited MoS2 films show excellent lubrication properties. Nevertheless, the film-substrate adherence is unsufficient and could not be improved by depositing interface layers. With the method of ion beam mixing by using argon and nitrogen beams of up to 400 keV energy a considerable enhancement of the endurance life was observed. Secondary ion mass spectrometry (SIMS) has been used to examine layers of 0.5 m thickness. Variation of the ion species, dose and energy have been used for optimum endurance life. The results of tribological measurements compared to SIMS depth profiles are demonstrated and discussed.  相似文献   

5.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

6.
Werner  Helmut 《Mikrochimica acta》1994,114(1):107-127
The performance indicators for a quantitative analysis (random and systematic uncertainties) are defined, and their origin in SIMS (secondary ion mass spectrometry) is discussed. The different methods for quantitative SIMS analysis: calibration curve approach, implanted standard method, relative sensitivity factor (RSF) method, are discussed. Examples are given for successful quantitative SIMS analyses of epilayers, implanted depth profiles and interface (IF) impurity distribution. In conclusion, a comparison is made between SIMS and other advanced techniques for thin film analysis.  相似文献   

7.
Summary Attempts to obtain a quantitative analysis of depth profiles of oxide films on iron-based ODS-alloys using MCs+-SIMS and e-beam SNMS are presented. Since the oxide films of the alloys consist mainly of alumina, implantation standards in Al2O3(sapphire) were used for the quantification of the measured depth profiles. The so-called matrix effect, normally present in SIMS analysis, is strongly reduced by recording the MCs+-secondary ions. Over a wide concentration range, agreement between SIMS and SNMS data is obtained within a factor 2–3. The evaluated concentration profiles for the main alloying elements in combination with 18O tracer-experiments have been used to give an interpretation of the growth processes of the oxide films for Fe-based ODS-alloys, with and without the addition of an yttria dispersion. The results show that the addition of yttria dispersion is responsible for the dramatic change observed in the oxide growth mechanism.ODS=Oxide Dispersion strengthenedThis poster was awarded the First Prize in Poster Session A by the Deutscher Arbeitskreis für Spektroskopie (DASp)  相似文献   

8.
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La0.6Sr0.35MnO3 matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) – as a surface analytical method – has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO2 layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.  相似文献   

9.
Metal hydrides are one of the most promising technologies in the field of hydrogen storage due to their high volumetric storage density. Important reaction steps take place at the very surface of the solid during hydrogen absorption. Since these reaction steps are drastically influenced by the properties and potential contamination of the solid, it is very important to understand the characteristics of the surface, and a variety of analytical methods are required to achieve this. In this work, a TiMn2-type metal hydride alloy is investigated by means of high-pressure activation measurements, X-ray photoelectron spectroscopy (XPS), secondary neutral mass spectrometry (SNMS) and thermal desorption mass spectrometry (TDMS). In particular, TDMS is an analytical tool that, in contrast to SIMS or SNMS, allows the hydrogen content in a metal to be quantified. Furthermore, it allows the activation energy for desorption to be determined from TDMS profiles; the method used to achieve this is presented here in detail. In the results section, it is shown that the oxide layer formed during manufacture and long-term storage prevents any hydrogen from being absorbed, and so an activation process is required. XPS measurements show the oxide states of the main alloy elements, and a layer 18 nm thick is determined via SNMS. Furthermore, defined oxide layers are produced and characterized in UHV using XPS. The influence of these thin oxide layers on the hydrogen sorption process is examined using TDMS. Finally, the activation energy of desorption is determined for the investigated alloy using the method presented here, and values of 46 kJ/mol for hydrogen sorbed in UHV and 103 kJ/mol for hydrogen originating from the manufacturing process are obtained.  相似文献   

10.
Sb-doped SnO2 thin films, deposited by atomic layer epitaxy (ALE) for gas sensor applications, have been characterized by secondary ion mass spectrometry (SIMS). Quantification of the depth profile data has been carried out by preparing a series of ion implanted standards. Average concentrations determined by SIMS have been compared with Sb/Sn ratios obtained by X-ray fluorescence (XRF) spectrometry and proton induced X-ray emission (PIXE) spectrometry and have been found to be in good agreement. However, a detection limit of 5×1018 at cm-3 could only be obtained because of mass interferences. SIMS data show that the ALE technique can be used to produce a controllable growth and doping of thin films.  相似文献   

11.
The development of analytical tools and procedures for process control is a prerequisite for the integration of high permittivity and/or ferroelectric materials in CMOS devices. The thickness and composition of perovskite oxide films were determined by wavelength dispersive X-ray fluorescence analysis (XRF) with special emphasis on the ratio of the group-II elements to the Ti content, and a precision of 0.5% was achieved for a typical film thickness of 20-30 nm. Secondary ion mass spectrometry (SIMS) and sputtered neutrals mass spectrometry (SNMS) was used for depth profiling to determine film homogeneity and elemental interdiffusion at hetero-interfaces. Examples are given for Ba(x)Sr(1-x)TiO(3) and SrTiO(x) thin films which were grown in a prototype MOCVD production tool. No interdiffusion was observed for films grown at 600 degrees C on Pt electrodes in contrast to films grown directly on Si.  相似文献   

12.
Zn(O,S) is a promising candidate to replace the commonly used CdS buffer layer for Cu(In,Ga)Se2 (CIGS) thin‐film solar cells due to its non‐toxicity and its potential to enhance the conversion efficiency of the CIGS solar cell. The composition of chemical bath deposited (CBD) and sputtered Zn(O,S) layers with thicknesses well below 100 nm was determined by sputtered neutral and secondary ion mass spectrometry (SNMS and SIMS). Despite numerous mass interferences of double‐charged atoms and dimers with single Zn, O and S isotopes, we developed an evaluation algorithm for quantification of SNMS depth profiles of Zn(O,S) layers. In particular, the superposition of double‐charged S and Zn atoms with O and S isotopes is accounted for numerically in the quantification procedure. For sputtered Zn(O,S) layers, the S/(S + O) atomic ratio and the vertical composition profile can be controlled by the O2 content in the gas flow and the substrate temperature during sputtering whereas for CBD Zn(O,S) the S/(S + O) ratio is constant around 0.7–0.8. A Cu‐depleted layer of about 5 nm on the CIGS surface after buffer deposition was observed for both preparation methods. With negative SIMS, we found more hydroxides and carbon residues in CBD Zn(O,S) as compared to sputtered layers. Best cell performance with sputtered Zn(O,S) layers was achieved for S/(S + O) ratios of 0.25–0.40, yielding efficiencies up to 13%. Our solar cells with CBD Zn(O,S) buffers exhibit higher efficiencies due to an improved open‐circuit voltage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We attempted to make an accurate depth profiling in secondary ion mass spectrometry (SIMS) including backside SIMS for ultra‐thin nanometer order layer. The depth profiles for HfO2 layers that were 3 and 5 nm thick in a‐Si/HfO2/Si were measured using quadrupole and magnetic sector type SIMS instruments. The depth profiling for an ultra‐thin layer with a high depth resolution strongly depends on how the crater‐edge and knock‐on effects can be properly reduced. Therefore, it is important to control the analyzing conditions, such as the primary ion energy, the beam focusing size, the incidence angle, the rastered area, and detected area to reduce these effects. The crater‐edge effect was significantly reduced by fabricating the sample into a mesa‐shaped structure using a photolithography technique. The knock‐on effect will be serious when the depth of the layer of interest from the surface is located within the depth of the ion mixing region due to the penetration of the primary ions. Finally, we were able to separately assign the origin of the distortion to the crater‐edge effect and knock‐on effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We have investigated the merits of fullerene cluster ions as projectiles in time‐of‐flight secondary neutral mass spectrometry (ToF‐SNMS) sputter depth profiling of an Ni:Cr multilayer sample similar to the corresponding NIST depth profiling standard. It is shown that sputter erosion under bombardment with C60+ ions of kinetic energies between 10 and 20 keV provides good depth resolution corresponding to interface widths of several nanometres. This depth resolution is maintained during the complete removal of the multilayer stack with a total thickness of 500 nm. This finding is in contrast to the case where atomic Ga+ projectile ions of comparable kinetic energy are used, demonstrating the unique features of cluster projectiles in sputter depth profiling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Secondary neutral mass spectrometry (SNMS) has been used to profile coatings of the systems SiO2 and 65SiO2.20TiO2.15ZrO2 (STZ). The coatings have been deposited on float glass and heat insulating glass by dip coating from alkoxide solutions. The microporous gel coatings have been densified by heat treatment. The SBM method (separate bombardment mode) has been applied to characterize the systems and the HFM method (high frequency mode) to check for matrix effects in the SBM depth profiles. Both methods show sodium diffusion from the float glass substrate into the STZ coating and no significant sodium diffusion into the SiO2 coating. Measurements of the coatings on the heat insulating glass indicate that the SnO2 interlayer acts as a diffusion barrier. The diffusion of sodium from the float glass substrate into the STZ coating during consolidation has been analyzed by SBM-SNMS. The sputtering rate decreases with increasing consolidation. Due to large differences between sputtering rates of the substrate and of the microporous coatings, the calibration of sodium intensities from time to depth at the interface has not been possible. However, a correlation between the final temperature of heat treatment and the depth of the Na2O depletion in the substrate surface under the coating can be obtained.  相似文献   

16.
The antimony doping in SnO2 thin films prepared by the sol-gel dip-coating method has been studied using two characterization techniques. In order to determine the actual doping level directly in the deposited layers, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) have been used. We found that this doping level is systematically lower than expected from the starting solutions composition, and that two oxidation states are present: Sb3+ and Sb5+. As the antimony content increases, there is a competition between Sb5+ and Sb3+ species.The SnO2: Sb thin films have also been observed by transmission electron microscopy (TEM), showing that the measured mean size of crystallites decreases as the Sb content increases in the oxide. No precipitates of either Sn or Sb oxides (other than SnO2) could be detected.  相似文献   

17.
For the quantification of heterostructure depth profiles the knowledge of relative sensitivity factors (RSF) and the influence of matrix effects on the measured profiles is necessary. Matrix dependencies of the measured ion intensities have been investigated for sputtered neutral mass spectrometry (SNMS) and MCs+-SIMS. The use of Cs as primary ions for SNMS is advantageous compared to Ar because the depth resolution is improved without changing RSFs determined under Ar bombardment. No significant amount of molecules has been found in the SNMS spectra under Cs bombardment. Using MCs+-SIMS the RSFs are matrix dependent. An improvement of depth resolution can be achieved by biasing the sample against the primary ion beam for SNMS due to a reduction of the net energy of the primary ions and a resulting more gracing impact angle.  相似文献   

18.
A complex poly(vinylidene difluoride) (PVdF)/poly(methyl methacrylate) (PMMA)‐based coil coating formulation has been investigated using time‐of‐flight SIMS (ToF‐SIMS). Employing a Bi3+ analysis source and a Buckminsterfullerene (C60) sputter source, depth profiles were obtained through the polymeric materials in the outer few nanometres of the PVdF topcoat. These investigations demonstrate that the PVdF coating's air/coating interface is composed principally of the flow agent included in the formulation. Elemental depth profiles obtained in the negative ion mode demonstrate variations in the carbon, oxygen and fluorine concentrations within the coating with respect to depth. All three elemental depth profiles suggest that the PVdF coating bulk possesses a constant material composition. The oxygen depth profile reveals the presence of a very thin oxygen‐rich sub‐surface layer in the PVdF coating, observed within the first second of the sputter/etch profile. Retrospectively, extracted mass spectra (from the elemental depth profile raw data set) of the PVdF coating sub‐surface and bulk layers indicates this oxygen‐rich sub‐surface layer results from segregation of the acrylic co‐polymers in the formulation towards the PVdF coating air/coating interface. Molecular depth profiles obtained in both the positive and negative secondary ion modes provide supporting evidence to that of the elemental depth profiles. The molecular depth profiles confirm the presence of a sub‐surface layer rich in the acrylic co‐polymers indicating segregation of the co‐polymers towards the PVdF topcoats air‐coating surface. The molecular depth profiles also confirm that the PVdF component of the topcoat is distributed throughout the coating but is present at a lower concentration at the air‐coating interface and in the sub‐surface regions of the coating, than in the coating bulk. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Sputtering of solid surfaces by using a focused ion beam is the basis for secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS). The ion bombardment initiates not only redistribution of sample atoms but also massive changes in the surface and near surface composition of the bombarded area due to the sputter process and implantation of the primary ions. Changes in the matrix-composition affects the secondary ion yields and therefore a steady state (sputter equilibrium) has to be reached before SIMS data can give quantifiable results. SNMS is much less affected by those yield effects and therefore a combination of SIMS and SNMS can establish a basis for interpretation of SIMS data before the steady state is reached. In order to determine the effects of primary ion incorporation, we applied different primary ion species successively to generate different equilibria. An oxygen ion beam oxidizes the sample surface and by using a rare gas primary ion (PI) this oxide can be removed and analyzed.  相似文献   

20.
This paper describes an analytical procedure for determining the stoichiometry of BaxSr1–xTiO3 perovskite layers using inductively coupled plasma mass spectrometry (ICP-MS). The analytical results of mass spectrometry measurements are compared to those of X-ray fluorescence analysis (XRF). The performance and the limits of solid-state mass spectrometry analytical methods for the surface analysis of thin BaxSr1–xTiO3 perovskite layers – sputtered neutral mass spectrometry (SNMS) – are investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号