首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fifty individual food types were analysed by instrumental and radiochemical neutron activation analysis as well as inductively coupled plasma mass spectrometry after testing all techniques by analysing IAEA mixed human diet, H-9. The performance of these trace element techniques and their limitations were evaluated under normal, routine, multi-element surveys of a large range of solid biological materials.South Australian Department of Agriculture, 21 Divett Place, Adelaide, SA, Australia.  相似文献   

3.
4.
The analytical potential of double focusing-inductively coupled plasma-mass spectrometry (DF-ICP-MS) for total elemental analysis in clinical samples (serum, blood, urine and other biological fluids), tissues and food products is illustrated by reviewing typical applications recently published. Also, the use of DF-ICP-MS as specific detector for trace element speciation in biological samples is discussed. After adequate separation of interferences in the chromatographic column, low resolution measurements (R = 300) can be used to provide enhanced sensitivities of more than 100 times compared with quadrupole-inductively coupled plasma-mass spectrometry (Q-ICP-MS). This capability is extremely valuable in speciation studies. Also, the use of DF-ICP-MS at low resolution could provide very precise isotope ratio measurements for isotope dilution analysis due to the ‘flat topped’ peaks obtained at this resolution. Unfortunately, the literature on these last two issues is rather scarce so far, in spite of their extremely high analytical possibilities for biological research. Moreover, the bright future of DF-ICP-MS as a most powerful multielemental detector for trace element applications in biological systems will be highlighted. Apart from applications detailed above other important application fields can be envisaged. In particular, we will speculate on its possible use to confirm/establish ‘reference values’ of trace element content in ‘normal’ populations and so to help to diagnose health and disease status, related with trace element total content or their speciation in clinical specimens.  相似文献   

5.
Accelerator Mass Spectcrometry (AMS) is being used for both radionuclide dating and stable isotope trace element determination with limits of high sensitivity. The areas of applications of radionuclide AMS include oceanography, terrestrial studies, glaciology, hydrology, environmental studies, meteorology, archaeology, anthropology, analysis of crude oils, biomedical and materials sciences, etc. The techniques and applications of radionuclide AMS are reviewed. The applications of stable element AMS include the measurements of trace impurities in electronic and other materials. The techniques and applications of stable element AMS are discussed with particular emphasis on electronic materials such as Si, GaAs, and HgCdTe. The design of the University of North Texas stable element AMS facility built in collaboration with Texas Instruments Incorporated is discussed.Work supported in part by the National Science Foundation Grants No. DMR-8812331 and ECD-9003099, the Office of Naval Research Grants No. N00014-89-J-1309, N00014-89-J-1344, N00014-90-J-1691, and N00014-91-J-1785, Texas Instruments Incorporated, Texas Utilities Electric Inc. International Digital Modeling Corp., North Texas Research Institute, Combustion Engineering Inc., LTV Corporation, the State of Texas Higher Education Coordinating Board — Texas Advanced Technology Research Program, the Robert A. Welch Foundation, and the University of North Texas Organized Research Fund.  相似文献   

6.
This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements.  相似文献   

7.
Over the past three decades, more and more interest has been focused on trace eleemnts in biological materials. This increasing interest has gone hand in hand with the continuous improvement of analytical techniques. Neutron activation analysis has proven to be a most suitable method for the quantitative determination of a wide variety of trace (0.01–100 μg g?1) and ultratrace (<0.01 μg g?1) elements in biological materials. This technique has even played a preponderant role in this field.  相似文献   

8.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

9.
Summary A database recently prepared by IAEA contains information on 60 internationally available biological reference materials (BRMs) from 9 producers. The data recorded for each material include: name, code No., cost, list of elements, and minimum weight of material recommended for analysis. For each element the concentration and its confidence interval (CI) are recorded, as well as an indication of whether the concentration value is certified or noncertified (e.g. an information value).Large differences among producers are observed in respect of how the concentration values and their CIs are defined, and how other relevant information is reported in the certificates of analysis. International recommendations on how this should be done generally do not seem to be followed.For several elements of biomedical interest there is a serious lack of BRMs namely: Al, F, I, Mo, Si, Sn and V. In addition, the CIs for the following elements are generally excessively large: Al, As, Cd, Cr, Hg, Mo, Ni, Se and V.  相似文献   

10.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

11.
12.
In a diseased state in man or animals a change at eh molecular level might occur. A pyrolysis-high-resolution mass spectrometric method has been developed to measure these changes. The mass spectra are used as fingerprints. A similar approach is reported using low-resolution mass spectrometry. The difference between low resolution and high resolution is that the number of mass spectral lines is strongly increased and therefore also the information content. As a result, a change at the molecular level will be more pronounced in high-resolution mass spectra. As an application, the results of toxicity studies on Daphnia magna are given. The experiments were performed with paraoxon, parathion and malathion. The changes at the molecular level in Daphnia magna appear to be substance-dependent.  相似文献   

13.
Certified reference materials (CRMs) are used in analytical chemistry for method validation studies in order to establish measurement accuracy, traceability, and long-term stability throughout repeated analyses. Quality control (QC) during routine analysis requires access to stable materials appropriate for the sample matrix being analyzed. However, it may be difficult to find representative, low-cost QC materials, especially for specific analytes in biological tissue matrices. Here, four caprine liver pools are prepared for use as internal QC materials for trace element measurements in biological tissue. Analytes of interest include essential and nonessential trace elements and the lanthanide series elements. The suitability of caprine liver to serve as a secondary reference material (RM), as well as for routine QC purposes, is demonstrated through homogeneity and stability measurements, and the acquisition of precision and uncertainty data. Traceability is established for selected analytes for which available CRMs can provide an unbroken chain of calibrations.  相似文献   

14.
Summary Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described.  相似文献   

15.
Summary Accurate analysis results are a common problem in trace and micro determinations of elements, as found in particular in a number of interlaboratory studies. The difference between precision and accuracy of an analysis is shown in this review and a possible hierarchy of analytical methods is given. Isotope dilution mass spectrometry is the most accurate method of all mass spectrometric techniques. Possible element analyses by isotope dilution mass spectrometry are discussed using different ionization methods in the mass spectrometer (thermal ionization, spark source mass spectrometry, electron impact ionization, ICP and MIP, field desorption mass spectrometry). If MIP-MS and spark source mass spectrometry are applied, the difference between analysis results where the isotope dilution technique is and is not used is shown. The precision and accuracy of spark source mass spectrometry increases significantly when the isotope dilution method is applied. Accurate results by mass spectrometry are shown in comparison with certified values of standard reference materials using food samples, biological samples, geological samples, nuclear reactor materials, metals, and samples from the environment as examples. Possible sources of error by isotope dilution mass spectrometry are discussed. In contrast to the analysis of metal traces, only a few alternative methods can be applied to the trace analysis of non-metals and their anion forming compounds. In this case the production of negative thermal ions in a mass spectrometer in connection with the isotope dilution technique is a useful tool for accurate anion and non-metal analyses.
Hohe Richtigkeit in der Elementanalyse durch Massenspektrometrie
Zusammenfassung Richtige Analysenergebnisse sind ein allgemeines Problem bei der Spuren- und Mikrobestimmung der Elemente, wie sich vor allem immer wieder im Rahmen von Ringanalysen herausstellt. Der Unterschied zwischen Reproduzierbarkeit und Richtigkeit eines Analysenergebnisses wird in diesem Übersichtsartikel aufgezeigt und eine mögliche Hierarchie von Methoden aufgestellt. Im Bereich der Massenspektrometrie gilt die Isotopenverdünnungsanalyse als diejenige Methode, mit der die richtigsten Ergebnisse erhalten werden können. Für die Anwendung verschiedener Ionisationsmethoden im Massenspektrometer (Thermionisation, Funkenquellen-Massenspektrometrie, Elektronenstoßionisation, ICP und MIP, Felddesorptions-Massenspektrometrie) werden die Möglichkeiten der Elementanalyse durch die Isotopenverdünnungstechnik diskutiert. Bei Verwendung der MIP-MS und der Funkenquellen-Massenspektrometrie wird auch der Unterschied zwischen Ergebnissen, die mit und ohne Isotopenverdünnungsanalyse erhalten werden, aufgezeigt. Dabei ergibt sich für die Funkenquellen-Massenspektrometrie eine wesentliche Verbesserung der Analysenergebnisse, wenn die Isotopenverdünnungsmethode angewendet wird. Anhand von Beispielen (Lebensmittelproben, biologische Proben, geologische und kerntechnische Proben, Metalle, Umweltproben) wird die Richtigkeit der massenspektrometrischen Ergebnisse verdeutlicht, wobei häufig ein Vergleich zu zertifizierten Werten von Standard-Referenzmaterialien gegeben wird. Mögliche Fehlerquellen der Isotopenverdünnungsanalyse werden diskutiert. Da bisher zur Bestimmung von Anionen- und Nichtmetallspuren nur vergleichsweise wenige Verfahren zur Verfügung stehen, hat sich hier die Erzeugung negativer Thermionen in einem Massenspektrometer bei gleichzeitiger Anwendung der Isotopenverdünnungsanalyse bewährt.
  相似文献   

16.
Four decomposition procedures frequently used for biological material (dry ashing, open wet digestion, wet digestion in a teflon bomb and low-temperature ashing) are optimized for the conversion of biological samples to conducting electrodes suitable for multi-element trace determinations by spark-source mass spectrometry or emission spectrometry. The optimized procedures are evaluated with respect to contamination, retention and preconcentration of the trace elements, homogeneity of the electrodes and precision of the final results. Both dry-ashing methods are prone to losses by volatilization; simple dry ashing suffers from contamination problems during electrode preparation. Wet digestion gives better precision; digestion with nitric/sulfuric acids in an open flask is the method of choice for most elements being simpler and giving lower blanks than the bomb method.  相似文献   

17.
An Accelerator Mass Spectrometry (AMS) facility has been assembled at the University of North Texas (UNT) in collaboration with Texas Instruments, Inc. The UNT AMS facility is used primarily for the high sensitivity determination of trace elements of stable isotopes in materials. Particle accelerators, in conjunction with magnetic (momentum/charge) and electrostatic (energy/charge) spectrometers and particle energy detectors, may be used to measure rare isotopes at concentrations as low as one part in 1012 or 1010 atoms/cm3.  相似文献   

18.
Over the past two decades, new applications of inorganic mass spectrometry have been made possible by the use of stable isotopes as tracers in studies of mineral and trace element metabolism in man. Stable isotope techniques and radioisotope methods are the only reliable tools available for determination of the absorption, retention, or utilization of a nutrient by the human body. Recent developments in inorganic mass spectrometry might open new perspectives as progress in this field of research depends mainly on improving existing stable isotope techniques and on developing novel concepts. By improving precision in isotope analysis, isotope doses in experiments on man can be reduced to physiologically more meaningful levels. This will also enable reduction of the (often substantial) costs of isotopically labeling a nutrient in a test meal. Improvements in the mass spectrometric sensitivity will enable the development of new tracer techniques that have the potential to provide the information required by: 1. governmental institutions for designing food fortification programs; 2. the food industry for developing nutrient-fortified food products; and 3. public health authorities for establishing reliable dietary recommendations for intake of inorganic nutrients. In this context the current scope and limitations of thermal ionization mass spectrometry, inductively coupled mass spectrometry, accelerator mass spectrometry, and resonance ionization mass spectrometry are evaluated. Iron isotopic variations in the human body are discussed as a possible source of bias that might be a future biological limit to stable isotope-dose reduction in experiments on iron metabolism in man. Received: 9 February 2001 / Revised: 21 March 2001 / Accepted: 23 March 2001  相似文献   

19.
Over the past two decades, new applications of inorganic mass spectrometry have been made possible by the use of stable isotopes as tracers in studies of mineral and trace element metabolism in man. Stable isotope techniques and radioisotope methods are the only reliable tools available for determination of the absorption, retention, or utilization of a nutrient by the human body. Recent developments in inorganic mass spectrometry might open new perspectives as progress in this field of research depends mainly on improving existing stable isotope techniques and on developing novel concepts. By improving precision in isotope analysis, isotope doses in experiments on man can be reduced to physiologically more meaningful levels. This will also enable reduction of the (often substantial) costs of isotopically labeling a nutrient in a test meal. Improvements in the mass spectrometric sensitivity will enable the development of new tracer techniques that have the potential to provide the information required by: 1. governmental institutions for designing food fortification programs; 2. the food industry for developing nutrient-fortified food products; and 3. public health authorities for establishing reliable dietary recommendations for intake of inorganic nutrients. In this context the current scope and limitations of thermal ionization mass spectrometry, inductively coupled mass spectrometry, accelerator mass spectrometry, and resonance ionization mass spectrometry are evaluated. Iron isotopic variations in the human body are discussed as a possible source of bias that might be a future biological limit to stable isotope-dose reduction in experiments on iron metabolism in man.  相似文献   

20.
The ability to focus the laser accurately onto the sample with a small beam diameter (2.0–3.0 μm) enables laser mass spectrometry to be used as a microprobe. Results from a fully automated ion-mapping system for laser mass spectrometry are described. These results show that the spatial resolution of the laser microprobe is primarily limited by the diameter of the laser beam. Factors such as laser power density, laser focus, sample preparation, and chemical environment influence the reproducibility of laser mass spectra significantly. Calibration curves obtained in the analysis of mixtures of phenanthrolines demonstrate that laser mass spectrometry can be used to quantify organic components. Preliminary results on the detection of neutral molecules resulting from metastable decomposition in the flight tube are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号