首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min 1 sample loading rate. The detection limit was 0.2 ng L 1 and much lower than that of conventional method (around 15.8 ng L 1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L 1 of Hg and the linear working curve is from 20 to 2000 ng L 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.  相似文献   

2.
A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L?1 and 0.02 µg L?1 for As(III) and 0.15–8.50 µg L?1 and 0.03 µg L?1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.  相似文献   

3.
In the work the procedure of chromium(VI) determination by catalytic adsorptive stripping voltammetry (CAdSV) with application of fumed silica, is presented. Two variants of the method are proposed: in the first fumed silica is put directly to the electrolytic cell containing tested solution, in the second the silica is shaken with the sample and next centrifuged. The effectiveness of many surface‐active substances removal from synthetic solutions as well as natural water samples, is studied. In the experiments the fumed silica (Sigma‐Aldrich) of the specific surface area in the range 200–390 m2 g?1 was used. Two types of the working electrodes were applied, i.e., hanging mercury drop electrode (HMDE) and cyclic renewable mercury film electrode (Hg(Ag)FE). In the silica presence i) the relative standard deviation (RSD) for 0.1 μg L?1 Cr(VI) is <2% (HMDE) and <5% (Hg(Ag)FE), n=7, ii) the detection limits estimated deposition time 20 s were respectively 14 ng L?1 (HMDE) and 22 ng L?1 (Hg(Ag)FE). The accuracy of the method was tested by studying the recovery of Cr(VI) from spiked natural water samples.  相似文献   

4.
. The complex Hg4(L2)2(NO3)4 ( 1 ) (L2 = morpholin‐4‐ylpyridin‐2‐ylmethyleneamine) has been synthesized and characterized by CHN analysis, IR, and UV/Vis spectroscopy. The crystal structure of 1 was determined using single‐crystal X‐ray diffraction. The crystal structure of 1 contains four mercury atoms, four nitrate anions (two terminal and two bridge ones) and two L2 ligand molecules. A chair shape, six‐membered ring is formed with the sequence OHgHgOHgHg built from Hg–Hg dumbbells and oxygen atoms from the nitrate co‐ligands. In the crystal structure, the asymmetric unit of the compound is built up by one‐half of the molecule. It contains the Hg22+ moiety with a mercury–mercury bonded core, in which one diimine ligand is coordinated to one of the mercury atoms. The nitrate anions act as anisobidentate and bidentate ligands.  相似文献   

5.
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of uranium(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV) is presented. The Hg(Ag)FE electrode with a surface area adjustable from 1.1 to 12 mm2 is characterized by very good surface reproducibility (≤2%) and long‐term stability (more than 2 thousand measurement cycles). The mechanical refreshing of mercury film is realized in the simple constructed device, in a time shorter than 1–2 seconds. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 0.4 nM (95 ng L?1) to 250 nM (60 μg L?1) for an accumulation time of tacc=20 s, with correlation coefficient of 0.9996. For a Hg(Ag)FE with a surface area of 2.7 mm2 the detection limit for an accumulation time of 120 s is as low as 12 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 2.4 μg L?1, expressed as RSD is 2.5% (n=7). The proposed method was successfully applied and validated by studying the recovery of U(VI) from spiked river water and sediment samples.  相似文献   

6.
A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO4 solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl2 solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl2 solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g?1 for total Hg and 4.3 ng g?1 for inorganic Hg. The relative standard deviation for a 1.0 µg L?1 CH3Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 µg L–1 Hg2+ standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4°C.  相似文献   

7.
New, renewable copper (Hg(Cu)FE) and silver (Hg(Ag)FE) based amalgam film electrodes applied for the determination of elemental sulfur using differential pulse cathodic stripping voltammetry are presented. With surface areas adjustable from 1 to 12 mm2, both electrodes are characterized by very good surface reproducibility (≤2%) and long‐term stability (a few thousand measurement cycles). The mechanical refreshing of the amalgam film takes about 1–2 seconds. The effects of various factors such as instrumental parameters and the supporting electrolyte composition were optimized. Interferences from sulfides are easily removed by the addition of acid, and bubbling with argon, for Hg(Ag)FE. In the case of Hg(Cu)FE, sulfides did not interfere. The calibration graph is linear within the studied range from 16 ng L?1 to 4.8 μg L?1 for Hg(Cu)FE, and up to 6.4 μg L?1 for Hg(Ag)FE (tacc=15 s). The correlation coefficients for the two electrodes were at least 0.997. The detection limits for a low concentration of S(0) and tacc=60 s are as low as 14 ng L?1 for Hg(Cu)FE and 4 ng L?1 for Hg(Ag)FE. The proposed method was successfully applied and validated by studying the recovery of S(0) from spiked river water.  相似文献   

8.
《Analytical letters》2012,45(13):2217-2230
Abstract

(Acetylacetone)‐2‐thiol‐phenyleneimine (H2L) immobilized on an anion‐exchange resin (Dowex) was used for separation and removal of mercury from natural water samples and for preconcentration prior to its determination by cold vapor inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 10% thiourea in 0.1 M HCl. The modified resin is higly selective with an exchange capacity of 1.60 mmol g?1. Various parameters like pH, column flow rate, and desorbing agents are optimized. The proposed method has a linear calibration range of 15–1000 ng/ml Hg(II), with a relative standard deviation at the 15 ng/ml level of 3.5%. The precision of the method (evaluated as the relative standard deviation obtained after analyzing six series of five replicates) was ±4.2% at the 50 ng/ml level of Hg(II). The method has been used for routine determination of trace levels of mercury species in natural waters. The potential application of modified resin for the removal of mercury(II) from two natural water samples (top water and lake water) spiked with 50 ng/ml of mercury (II) was studied by ICP‐AES, and the results proved that excellent percent extraction of mercury(II) from both natural water samples was obtained by column method using modified resin.  相似文献   

9.
A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg2+ was complexed with I to form HgI42−, and the HgI42− reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg+) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L− 1 HNO3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg+ by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg+. The MeHg+ in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg+ with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg+, respectively. The limits of detection (LODs) were 56.3 ng L− 1 for Hg(II) and 94.6 ng L− 1 for MeHg+ (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg+ (C = 10 μg L−1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2–108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.  相似文献   

10.
Mercury is a highly toxic metal, of which even small doses (<200 ng mL−1) can cause serious problems for humans, plants, animals and microorganisms, including marine species and freshwater organisms. Hence, a simple, fast, highly selective and sensitive and accurate method for the detection of mercury in the environmental, clinical or biological samples is necessary. A new, sensitive and selective method for the determination of Hg(II) with 5 % N1-hydroxy-N1,N2-diphenylbenzamidine modified carbon paste electrode has been developed. Hg(II) was accumulated for 210 s on the surface of the modified electrode using 0.1 M CH3COONa of pH 7 at −0.8 V vs Ag/AgCl, followed by electrochemical stripping with SWASV in 0.1 M NH4Cl at pH 4. The linear range is 0.02–10 μM Hg(II) with limit of detection of 1.28 nM. The method has RSDs of 3.7 %. The method was applied for the determination Hg(II) in five types of water samples. The recoveries were in the range 97.8–103 %. The proposed method was found to be highly selective and sensitive and has many attractive features compared to previous reports such as low cost, simplicity of electrode preparation, long term stability, fast response, easy renewable ability, and reasonable short accumulation time.  相似文献   

11.
Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T 1/2 = 2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T 1/2 = 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g−1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g−1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g−1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g−1 WS with mercury additions of 2.5 ng g−1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058 ± 0.0013% g−1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L−1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L−1.  相似文献   

12.
The UV-induced cold vapor generation with formic acid coupled to AAS after high pressure oxygen microwave decomposition was developed for determination of total Hg in analytical samples. Certified reference materials were decomposed in 1.5 mol L− 1 HNO3 and 0.6 mol L− 1 H2O2. Microwave decomposition with oxygen has allowed the use of diluted reagents. The oxygen at a pressure of ca. 15 bar was delivered during the mineralization to the closed vessel. Interference by unused residues of H2O2 and HNO3 was observed. In order to overcome the negative effect of remaining oxidants pre-reduction with hydroxylammonium chloride at a concentration 0.75 mmol L− 1 was used. Recovery of mercury in four reference materials containing 0.20–1.99 µg g− 1 Hg were 99–104% of certificate values. The limits of detection and quantification in the sample solutions were determined as 0.12 and 0.38 µg L− 1, which corresponds to absolute detection limits of 12 and 38 ng g− 1 for total mercury, respectively. The results were in good agreement with the t-test at a 95% confidence level of the certified values in the investigated reference materials. The relative standard deviation was better than 7% for most of the samples.  相似文献   

13.
《Analytical letters》2012,45(7):1210-1223
A new magnetic adsorbent, 2,2′-thiodiethanethiol grafted with tetraethyl orthosilicate modified Fe3O4 nanoparticles, was developed for the separation and preconcentration of Hg, Pb, and Cd in environmental and food samples. The concentrations of Pb and Cd were determined by inductively coupled plasma–optical emission spectrometry; Hg was determined by cold vapor atomic absorption spectrometry. A comprehensive study on the factors affecting the extraction and desorption efficiencies was performed. Under the optimized conditions, the method was linear in the 0.01–750 ng mL?1 range (before preconcentration) with detection limits of 4, 8, and 2 ng L?1 for Hg, Pb, and Cd, respectively. Relative standard deviations of 2.3, 2.9, and 2.4% (concentration 50 ng mL?1, n = 7) and high preconcentration factors of 291, 285, and 288 were also obtained for Hg, Pb, and Cd. The accuracy of the proposed method was validated by analyzing a water certified reference material with satisfactory recoveries. The method was successfully applied to the determination of the analytes in tap and mineral waters and canned tuna fish samples.  相似文献   

14.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

15.
The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH3Hg+], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L−1 HCl for methylmercury and 0.8 mol L−1 CN for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.  相似文献   

16.
Inorganic and organic mercury at ng l?1 levels in fresh waters are collected simultaneously on a column of a dithiocarbamate-treated resin and quantitatively eluted with slightly acidic aqueous thiourea solution. Mercury vapor is generated from inorganic mercury by reduction with alkaline SnCl2 solution, and from inorganic and organic mercury with a CdCl2SnCl2 solution, for determination by cold-vapor atomic absorption spectrometry. The range of determination is 0.2–5,000 ppt (ng l?1) for 20-l water samples.  相似文献   

17.
Silver (Ag) and gold (Au) nanoparticles impregnated in nylon membrane filters have been proposed as a new solid phase for preconcentration of mercury from natural waters. Water samples were treated with KMnO4 to convert all mercury species to inorganic Hg2+ and this was followed by the reduction of Hg2+ with NaBH4 to elemental Hg0. The determination of Hg was carried out by thermal evaporation of mercury from membrane filters using Zeeman mercury analyzer RA–915+ (Lumex, Russia). This process does not involve any additional sample treatment and sharply reduces risk of samples contamination. The limit of detection (LOD) was found to be 0.04 ng (absolute mass). Relative LOD was 0.4 ng L−1 for 100 mL of water. The method was validated through the analysis of CRM NRCC Tort–2 (Lobster hepatopancreas) and the found value (0.30 ± 0.07 μg g−1) was in good agreement with the certified value (0.27 ± 0.06 μg g−1). High efficiency of Hg accumulation from aqueous phase to membrane filters can be attributed to a large surface area of nanoparticles.  相似文献   

18.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

19.
《Electroanalysis》2005,17(9):755-761
This paper proposes a simple methodology for mercury quantification in natural water by stripping chronopotentiometry at constant current, using gold (film) electrodes constructed from recordable CDs in stationary cell. The proposed method allows the direct measurement of labile mercury in natural waters. To quantify total mercury, a robust and low cost UV irradiation system was developed for the degradation of organic constituents of water. The proposed system presents such advantages as excellent sensitivity, low cost, versatility, and smaller dimensions (portability for on‐field applications) when compared with other techniques (ICP, GFAAS, fluorimetry) traditionally utilized for mercury quantification. A large linear region of responses was observed, situated over the range 0.02–200 μg L?1. Various experimental parameters were optimized and the system allowed quantifications in natural samples, with detection limit of 8 ng L?1 and excellent reproducibility (RSD of 1.4% for 48 repetitive measurements using a 10 μg L?1 mercury solution). Different metal ions were evaluated, including copper, as possible interferences on stripping mercury signals. Applications of the new method were demonstrated for the analysis of certified and groundwater samples spiked with a known amount of mercury and for the quantification of methylmercury in synthetic oceanic water, originally utilized for fishes contamination experiment.  相似文献   

20.
This work presents a simple and innovative protocol employing a microfluidic paper-based analytical device (µPAD) for equipment-free determination of mercury. In this method, mercury (II) forms an ionic-association complex of tetraiodomercurate (II) ion (HgI42−(aq)) using a known excess amount of iodide. The residual iodide flows by capillary action into a second region of the paper where it is converted to iodine by pre-deposited iodate to liberate I2(g) under acidic condition. Iodine vapor diffuses across the spacer region of the µPAD to form a purple colored of tri-iodide starch complex in a detection zone located in a separate layer of the µPAD. The digital image of the complex is analyzed using ImageJ software. The method has a linear calibration range of 50–350 mg L−1 Hg with the detection limit of 20 mg L−1. The method was successfully applied to the determination of mercury in contaminated soil and water samples which the results agreed well with the ICP-MS method. Three soil samples were highly contaminated with mercury above the acceptable WHO limits (0.05 mg kg−1). To the best of our knowledge, this is the first colorimetric µPAD method that is applicable for soil samples including mercury contaminated soils from gold mining areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号