首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (Mab) with extraordinary sensitivity and high class selectivity to triazine herbicides is described. With an enzyme-linked immunosorbent assay (ELISA) using Mab 4A54 IC50 values for terbuthylazine, atrazine, propazine and simazine below 0.1 μg/L (the EU maximum admissible concentration for individual pesticides) have been obtained. Detection limits of 0.004 μg/L for terbuthylazine, 0.006 μg/L for atrazine, 0.003 μg/L for propazine, 0.01 μg/L for simazine and 0.05 μg/L for deethylterbuthylazine could be achieved. Therefore, Mab 4A54 allows a sum screening of these five triazines in a relevant concentration range. To our knowledge, this is the most sensitive antibody to terbuthylazine at all and also the most sensitive Mab to all these four triazines. Another monoclonal antibody resulting from the same immunization, clone 4A118, exhibits best sensitivity for propazine (detection limit: 0.02 μg/L) at lower cross-reactivity to terbuthylazine and atrazine compared to clone 4A54. Affinity constants of both Mabs towards several triazines have been calculated. The application of both Mabs for the analysis of triazines in water samples of different origin has been tested and their resistance towards humic acid influence could be shown. A good correlation of the analysis of water samples with GC and ELISA was observed. Received: 17 February 1997 / Revised: 1 April 1997 / Accepted: 3 April 1997  相似文献   

2.
This paper describes the development of a sequential injection chromatography (SIC) procedure for separation and quantification of the herbicides simazine, atrazine, and propazine exploring the low backpressure of a 2.5 cm long monolithic C18 column. The separation of the three compounds was achieved in less than 90 s with resolution >1.5 using a mobile phase composed by ACN/1.25 mmol/L acetate buffer (pH 4.5) at the volumetric ratio of 35:65 and flow rate of 40 μL/s. Detection was made at 223 nm using a flow cell with 40 mm of optical path length. The LOD was 10 μg/L for the three triazines and the quantification limits were of 30 μg/L for simazine and propazine and 40 μg/L for atrazine. The sampling frequency is 27 samples per hour, consuming 1.1 mL of ACN per analysis. The proposed methodology was applied to spiked water samples and no statistically significant differences were observed in comparison to a conventional HPLC–UV method. The major metabolites of atrazine and other herbicides did not interfere in the analysis, being eluted from the column either together with the unretained peak, or at retention times well‐resolved from the studied compounds.  相似文献   

3.
《Analytical letters》2012,45(15):3013-3025
Abstract

A rapid, non-isotopic polarization fluoroimmunoassay (PFIA) for the monitoring of the simazine (striazine herbicide) level in water was developed. Polyclonal antiserum was raised in rabbits by immunization with simazine – Keyhole Limpet Haemocyanin conjugate. Sensitivity of the PFIA with the use of heterologous tracer with the shortest bridge between antigen and fluorescein proved to be the highest. All analytical criteria for PFIA were satisfied. The detection limit of simazine (3 ng/ml in 50 μl of sample) was comparable to that for liquid or gas chromatography method. The detection limit of ELISA using the same antiserum and conjugate derivative of atrazine with horseradish peroxidase was 0.1 ng/mL of simazine. The cross-reactivity for PFIA with widely used s-triazine herbicides: atrazine, propazine, terbuthylazine was 100%, 32% and 20%, respectively. The cross-reactivity for PFIA with some metabolites of s-triazines and other herbicides was negligible.  相似文献   

4.
Chloro-s-triazines are a class of compounds comprising atrazine, simazine, propazine, cyanazine and their chlorinated metabolites. The US Environmental Protection Agency (EPA) has determined that selected chloro-s-triazines--atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine, and didealkylatrazine--have a common mode of toxicity related to endocrine disruption. In this paper, a dual-resin solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) method is reported that provides for each of these chloro-s-triazines including the polar metabolite, didealkylatrazine. The method utilizes deuterated internal standards for quantitation and terbuthylazine as a recovery standard. The limit-of-detection was 0.01 microg/L for simazine, deethylatrazine, deisopropylatrazine and didealkylatrazine, and 0.02 microg/L for atrazine and propazine in surface water. Mean recoveries for 0.5 and 3.0 microg/L spikes for atrazine, simazine, propazine, deethylatrazine, deisopropylatrazine and didealkylatrazine were 94, 104, 103, 110, 108 and 102%, respectively, in surface water. The method was also validated by matrix spikes into fourteen different raw and treated natural surface waters. This method is useful for monitoring "total chloro-s-triazines" in both raw and treated drinking waters.  相似文献   

5.
Y Wen  L Chen  J Li  Y Ma  S Xu  Z Zhang  Z Niu  J Choo 《Electrophoresis》2012,33(15):2454-2463
A simple and sensitive method for the simultaneous determination of four triazines from soil, strawberry, and tomato samples was developed by selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled to micellar electrokinetic chromatography (MEKC). Using atrazine as template, the synthesized molecularly imprinted polymers (MIPs) were employed as the dispersion sorbent of MSPD to successfully extract atrazine and its analogs of simazine, ametryn, and propazine from the three different real samples, while matrix interferences were effectively eliminated simultaneously under the optimum extraction conditions. Excellent separation was achieved within 7 min by using an optimized buffer system composed of 30 mmol/L ammonium acetate, 20 mmol/L SDS, and 15% ACN at pH 9.45, obtained by orthogonal design. Good linearity was obtained in a range of 0.5-25 μg/g with the correlation coefficients R(2) ≥0.9991 except for strawberry sample within 1-25 μg/g, and limits of detection were between 12.9-31.5 ng/g in all the three samples. The average recoveries of the four triazines at three different spiked levels were ranged from 53.5 to 98.4% with the relative standard deviations of 1.28-4.89%. This method was proved convenient, costeffective, and environmental benign and could be used as an alternative tool to the existing methods for analyzing the residues of triazines in soil, fruit, and vegetable samples.  相似文献   

6.
In this paper, a novel strategy for multicomponent analysis of two classes of pesticides such as triazines (atrazine and simazine) and phenoxyalkanoic acids (2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chlorophenoxyacetic acid (CPOAc), phenoxyacetic acid (POAc)) employing immuno-arrays is demonstrated. The approach is based on cross-reactive arrays of specific antibody pairs coupled to chemometric pattern recognition. The monoclonal antibody pairs employed in this work (atrazine-simazine and 2,4-D) are specific towards a set of analytes and preclude a particular set of others present in the sample matrix. Antibody pairs of atrazine, simazine, and 2,4-D are used to discriminate and quantify analyte of interest. Atrazine was quantified in presence of trace concentration of simazine and that of 2,4-D. The combinatorial cross-reactivity of antibody pairs towards simazine, atrazine and 2,4-D is used to distinguish among different classes of analytes and their influence on the signal suppression in immuno-techniques. These sensors exclude recognition by carbamates such as carbaryl and carbofuran.  相似文献   

7.
A simple, effective, and economic method for determination of nine triazines (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine, and terbutryn) in drinking water based on solid-phase extraction (SPE) followed by high-performance liquid chromatography-diode array detection (HPLC-DAD) was developed. A specialized solid phase (Oasis HLB) was used, and the parameters that may affect the efficiency of SPE were optimized. The limits of detection (ranged from 0.010 to 0.023 µg L?1) were satisfactory and allow the determination of triazines at the levels required by European Union legislation. Repeatability (2.4–7.6%) and intermediate precision (0.9–11.0%) calculated at 0.1 µg L?1 (legislation level) were adequate. The accuracy calculated as the average recovery of spiked tap and mineral waters was higher than 86% for all compounds. The developed method also could be used for undergraduate laboratory experiments because it acquaints students with solution preparation, solid phase extraction procedure, and HPLC-DAD technique.  相似文献   

8.
Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted‐based dispersive solid‐phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the studied triazines were within the range of 75.2–94.1%, with relative standard deviations lower than 11.3% (= 3). The limits of detection were within 0.16–0.51 µg/L, depending upon the triazine and the type of sample analyzed.  相似文献   

9.
Abstract

Photochemical reactions of atrazine, propazine, simazine, terbuthylazine, ametryn and atraton were investigated in aqueous and buffered (pH=7–9) solutions (containing a few percent of acetonitrile) using a polychromatic Xe light source at T=22[ddot]C. For terbuthylazine the photochemistry is investigated in detail, including solvent-, temperature-and pH-dependence and products found. The role of polychromatic light sources used in investigations of the photochemistry of triazines is discussed.

For the first time, quantum yield measurements were performed in the UV-band between 240–300 nm of the chlorotriazines and ametryn. Isosbestic points were found in the UV-spectra at different irradiation times, and UV-spectroscopy was used to obtain kinetic information.

Quantum yields in aqueous solutions at T=22[ddot]C for the chlorotriazines (Φ=0.048–0.062) and for ametryn (Φ=0.043) are comparable. The temperature dependence of the photoreaction of terbuthylazine leads to an activation energy of about 13 kJ mol?1. Quantum yields in acetonitrile and hexane for terbuthylazine are about half of the values found in aqueous solution.

Atraton was not degradable under the conditions used, and the quantum yield could only be estimated to be Φ < 0.002.  相似文献   

10.
An analytical methodology based on a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for the determination of several triazines (atrazine, simazine, desethylatrazine (DEA), desisopropylatrazine (DIA), and propazine) in vegetable samples. A methacrylic acid-based imprinted polymer was prepared by precipitation polymerisation using propazine as template and toluene as porogen. After removal of the template by Soxhlet extraction, the optimum loading, washing, and elution conditions for MISPE of the selected triazines were established. The optimised MISPE procedure was applied to the extraction of the selected triazines in pea, potato, and corn sample extracts and a high degree of clean-up was obtained. However, some remaining interferences, non-specifically and strongly bound to the polymeric matrix, appeared in the chromatogram, preventing quantification of DIA in potatoes and DIA, DEA, and propazine in corn samples. Thus, a new clean-up protocol based on the use of a non-imprinted polymer for removal of these interferences prior to the MISPE step was developed. By following the new two-step MISPE procedure, the matrix compounds were almost completely removed, allowing the determination of all the triazines selected at concentration levels below the established maximum residue limits, making the developed procedure suitable for monitoring these analytes in vegetable samples.  相似文献   

11.
An atrazine flow-through fluoroimmunosensor was developed, based on an oriented antibody covalently bound to Protein-A (Prot-A) immobilized on Controlled Pore Glass (CPG). Atrazine was detected “in-situ” by placing the immobilized antibody in the optical path of the flow cell. Immobilization of 30 μg of polyclonal anti-atrazine antibody on 0.5 g of Prot-A-CPG provided the highest sensitivity. The effect of several solvents on the covalently immobilized antibodies regeneration was evaluated, the optimum conditions being achieved by pumping 5% acetonitrile (pH = 3) at 0.15 mL/min for 100 s. The detection limit of the immunosensor was 0.7 μg/L and the reproducibility was 2% and 4% for 5 μg/L and 40 μg/L, respectively, in the optimum working concentration range (0.7–50 μg/L). This device allowed 12 samples per hour to be analyzed and had a life-time of 200 assays. Simazine and desisopropylatrazine (DIA) were not cross-reactive, desethylatrazine (DEA) has a cross-reactivity of 8% and propazine and prometryn of 44% and 27%, respectively. The immunosensor was applied to the determination of atrazine in tap and ground water samples spiked at the ¶10 and 30 μg/L concentration level.  相似文献   

12.
Summary A semi-automatic coupled-column HPLC-method for the rapid determination of desethylatrazine, simazine, atrazine and terbuthylazine in drinking water was developed. Tenax TA was used as precolumn packing material. 100 ml of the water sample are percolated through the precolumn, on which the analytes are preconcentrated and prefractionated. After the HPLC-integrated sample processing the triazines are transferred to the series-connected analytical column, where separation and detection takes place. The method leads to detection limits between 15 and 32 ng/l. The recovery rates range from 46 to 96% in drinking water.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

13.
A method for the identification and quantification of cross-reacting analytes using competitive immunochemical assays is described. The method uses information both of antibodies with and without significant inhibition caused by a sample. Maximum concentrations of all possible analytes were estimated for all antibodies not showing a significant inhibition. These maximum concentrations could be used to exclude certain analytes from the further identification process. A minimum variance method was used for the identification of analytes from the data given by antibodies showing significant inhibition. All samples were measured in a parallel affinity sensor array (PASA). The PASA system allows the parallel performance of numerous individual immunochemical assays. Triazines were used as a model substance class. Samples containing either atrazine, terbuthylazine, simazine or deethylatrazine at different concentration levels were generated and analyzed in the PASA system. 11 out of 13 samples were correctly identified, 2 samples could not be identified without doubt, no wrong identification was observed. Samples of atrazine, terbuthylazine and simazine at a concentration level of 0.1 μg/L, the EU maximum admissible concentration for individual pesticides, and of deethylatrazine at 0.3 μg/L could be quantified. Received: 25 September 1998 / Revised: 30 November 1998 / Accepted: 5 December 1998  相似文献   

14.
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL− 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL− 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

15.
A selective extraction technique based on the combination of liquid membrane (microporous membrane liquid–liquid extraction) and molecularly imprinted polymers (MIP) was applied to triazines herbicides in food samples. Simazine, atrazine and propazine were extracted from aqueous food samples through the hydrophobic porous membrane that was impregnated with toluene, which also formed part of the acceptor phase. In the acceptor phase, the compounds were re-extracted onto MIP particles. The extraction technique was optimised for the amount of molecularly imprinted polymers particles in the organic acceptor phase, extraction time, and type of organic acceptor solvent and desorption solvent. An extraction time of 90 min and 50 mg of MIP were found to be optimum parameters. Toluene as the acceptor phase was found to give higher triazines binding onto MIP particles compared to hexane and combinations of diethyl ether and hexane. 90% methanol in water was found to be the best desorption solvent compared to acetonitrile, methanol and water. The selectivity of the technique was demonstrated by extracting spiked lettuce and apple extracts where clean chromatograms were obtained compared to liquid membrane extraction alone or to the microporous membrane liquid–liquid extraction – non-imprinted polymer combination. The MIP showed a certain degree of group specificity and the extraction efficiency in lettuce extract was 79% (0.72) for simazine, 98% (1.55) for atrazine and 86% (3.08) for propazine.  相似文献   

16.
《Analytical letters》2012,45(1-3):503-513
Coupling a liquid core waveguide cell to a sequential injection chromatograph improved the detection limits for determination of triazine herbicides without compromising peak resolution. Separation of simazine, atrazine, and propazine was achieved in water samples by a 25 mm long C18 monolithic column. Detection was made at 238 nm using a type II LCW (silica capillary coated with Teflon® AF2400) cell with 100 cm of optical path length. Detection limits for simazine, atrazine, and propazine were 2.3, 1.9, and 4.5 µg L?1, respectively. Reduced analysis time and low solvent consumption are other remarkable features of the proposed method.  相似文献   

17.
固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物   总被引:17,自引:0,他引:17  
李竺  陈玲  郜洪文  董丽娴  赵建夫 《色谱》2006,24(3):267-270
建立了固相萃取-高效液相色谱法(SPE-HPLC)测定地表水中三嗪类化合物的方法。考察了4种不同固相萃取柱对三嗪类化合物的吸附效果,最终选择ENVI-18固相萃取柱用于萃取地表水中的三嗪类化合物;系统研究了环境水样中三嗪类化合物的最佳固相萃取条件,选择洗脱溶剂为甲醇,洗脱溶剂用量5 mL,水样在萃取前不需要添加甲醇,不调节pH值。测定了方法的检测限,结果表明,扑草净、莠去津、西玛津、脱乙基莠去津、羟基化莠去津和脱异丙基莠去津的最低检测限依次为0.14 μg/L,0.12 μg/L,0.08 μg/L,0.08 μg/L,0.10 μg/L和0.18 μg/L。将该法应用于实际环境水样的分析测定,结果表明某湖水中扑草净的含量为(9.33±0.27) μg/L,某江水中莠去津和扑草净的含量分别为(5.28±0.43) μg/L和(7.12±0.54) μg/L。  相似文献   

18.
An analytical method combining disk solid-phase extraction with micellar electrokinetic chromatography has been developed for the determination of atrazine, simazine, hydroxyatrazine, deisopropylatrazine, deethylatrazine, propazine and prometryn in water samples. The influence of the buffer and sodium dodecyl sulfate (SDS) concentration, pH and organic modifier on the separation has been studied. Baseline separation of the seven triazines was achieved under the following conditions: 10 mM borate buffer, 60 mM SDS, 20% methanol and pH 9.2. C18-bonded silica and poly(styrene-divinylbenzene) (PS-DVB) disks were evaluated for solid-phase extraction of the selected pesticides (11 of water sample). Using two PS-DVB disks, quantitative recoveries were obtained for all pesticides tested. The method was successfully applied for the determination of the seven triazines in drinking and well water at the 0.1 microg l(-1) and 0.5 microg l(-1) concentration levels, respectively. The detection limits for these analytes using the proposed analytical method were within the 0.02-0.06 microg l(-1) range in drinking water and the 0.06-0.30 microg l(-1) range in well water.  相似文献   

19.
Immunoassays for triazine herbicides were tested for their reaction to the variation of the tracer incubation time. By application of a sequential technique the measuring range of atrazine could be expanded to five decades and the total duration of the test could be reduced to about 30 min. In an optimized version a lower detection limit of 9 pmol/l (2 ng/l) was achieved. The detection limit of a sensitive immunoassay for terbuthylazine is also below the concentration limit demanded of the German drinking water regulation (100 ng/l) and reaches 130 pmol/l (30 ng/l). Short tracer incubation times did not lead to increased cross-reactivities in contrast to theoretical models [1, 2]. Different mechanisms, which could cause a shift of the center point of the calibration curve, are discussed, including kinetic considerations.Nomenclature ametryn 2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-1,3,5-triazine - atrazine 2-(chloro)-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine - deethylatrazine 2-(amino)-4-(chloro)-6-(isopropylamino)-1,3,5-triazine - DMSO dimethylsulfoxide - DOC dissolved organic carbon - ELISA enzyme-linked immunosorbent assay - glyme 1,2-dimethoxyethane - hydroxyatrazine 2-(ethylamino)-4-(hydroxy)-6-(isopropylamino)-1,3,5-triazine - PBS phosphate buffered saline - propazine 2-(chloro)-4,6-bis(isopropylamino)-1,3,5-triazine - simazine 2-(chloro)-4,6-bis(ethylamino)-1,3,5-triazine - terbuthylazine 2-(tert-butylamino)-4-(chloro)-6-(ethylamino)-1,3,5-triazine - TLC thin-layer chromatography - TMB 3,3,5,5-tetramethylbenzidine - tracer enzyme (peroxidase) labeled hapten  相似文献   

20.
Summary Eight triazine herbicides, prometon, propazine, atrazine, simazine, prometryn, ametryn, metribuzin, and cyanazine, have been extracted from human whole blood and urine samples by headspace solid-phase microextraction (SPME) with a polydimethylsiloxane-coated fiber and quantified by capillary gas chromatography with nitrogen-phosphorus detection. Extraction efficiencies for all compounds were 0.21–0.99% for whole blood, except for cyanazine (0.06%). For urine, the extraction efficiencies for prometon, propazine, atrazine, prometryn and ametryn were 13.6–38.1%, and those of simazine, metribuzin and cyanazine were 1.35–8.73%. The regression equations for the compounds extracted from whole blood were linear within the concentration ranged 0.01–1 μg (0.5 mL)−1 for prometon, propazine, atrazine, prometryn, and ametryn, and 0.02–1 μg (0.5 mL)−1 for simazine, metribuzin, and cyanazine. For urine, regression equations for all compounds were linear within the concentration range 0.005–0.25 μg mL−1. Compound detection limits were 2.8–9.0 ng (0.5 mL)−1 and 0.4–2.0 ng mL−1 for whole blood and urine, respectively. The coefficients of within-day and day-to-day variation were satisfactory for all the compounds, and not greater than 10.3 and 14.2%, respectively. Data obtained from determination of atrazine in rat whole blood after oral administration of the compound are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号