首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

2.
The formation of doubly charged polyatomic ions in inductively coupled plasma mass spectrometers was investigated using commercially available instruments. The species observed were ThO2+ and ThOH2+, which were found in similar amounts with the different instruments used in this study, when operated under routine analytical conditions. The signal ratios for ThO2+ were between 1.8 x 10(-4) and 4.2 x 10(-4) relative to the singly charged elemental ion and between 1.4 x 10(-2) and 2.2 x 10(-2) relative to the doubly charged elemental ion. The formation of ThOH2+, was between 1.1 x 10(-4) and 2.8 x 10(-4) relative to the singly charged elemental ion and between 0.72 x 10(-2) and 1.3 x 10(-2) relative to the doubly charged elemental ion. A mechanism is proposed for the formation of the doubly charged oxide and hydroxide ions that is based on the condensation of the doubly charged elemental ion with water or oxygen molecules in the interface region of the mass spectrometer.  相似文献   

3.
The results of a study on interfacing an Orbitrap mass analyzer with direct ion injection to a surface assisted laser desorption/ionization (SALDI) ion source are presented. Osmium complexes with 8-mercaptoquinoline were studied. Titanium oxide thin films prepared by electron beam evaporation were found an effective emitter of the ions of the test complexes. It was demonstrated that interfacing the Orbitrap mass analyzer to a SALDI source can significantly improve the analytical performance of this method in comparison to a typical combination of SALDI/time-of-flight mass spectrometer.  相似文献   

4.
This is a follow-up paper of our previous report on an ion source, which was operated at an operating pressure higher than the atmospheric pressure. Besides having more working gas for desolvation, the reduction of mean free path of electrons in a higher pressure environment increases the threshold voltage for gaseous breakdown, thus enabling a stable electrospray for the sample solution with high surface tension without the occurrence of electric discharge. In our previous work, the ion source was not coupled directly to the mass spectrometer and significant amount of ions were lost before entering the vacuum of the mass spectrometer. In this paper, we report the new design of our second prototype in which, by using a modified ion transport capillary, the pressurized ESI ion source was coupled directly to the first pumping stage of the mass spectrometer without additional modification on the vacuum pumping system. Demonstrations of the new ion source on the sensitive detection of native proteins from aqueous solution in both positive and negative ion modes are presented.  相似文献   

5.
A novel inductively coupled plasma/selected-ion flow tube (ICP/SIFT) mass spectrometer has been constructed for the study of the kinetics and product distributions of reactions of atomic and atomic oxide ions with neutral molecules. The ICP essentially provides a universal source for atomic ions. The operation of the instrument is demonstrated with prototype reactivity and kinetic measurements.  相似文献   

6.
Quantitation of iron oxide (Fe(2)O(3)) in pharmaceutical formulations using electrospray ionization mass spectrometry (ESI-MS) following iron complexation with 4-(2-pyridylazo)resorcinol (PAR) was evaluated. Complexation of Fe(III) with PAR was found to produce an intense mass spectral signal at low pH compared to the free ligand. Using the selected-ion-monitoring mode of a triple-quadrupole mass spectrometer, the signal at m/z 484 arising from the singly charged [Fe(III)(PAR)(2)](+) complex gave a limit of detection of ~2 μM for total iron. The linear range of the calibration curve was found to be 2-43 μM total iron. Trace iron interference was decreased to submicromolar levels by performing an optimized labware cleaning protocol and instrument replumbing using Polyetheretherketone (PEEK) tubing. The validation parameters of this ESI-MS total iron analysis (specificity, linearity, precision, accuracy, robustness and stability) are within the acceptance criteria listed in the validation guidelines developed by the Food and Drug Administration for industry. Recovery of 93% of the added iron indicated a satisfactory extraction procedure for tablets containing Fe(2)O(3) pigment. There was no statistical difference between the results obtained by ESI-MS and the common elemental method, inductively coupled plasma-optical emission spectroscopy. Since the proposed ESI-MS method can be performed on a mass spectrometer equipped with an ESI source, which is standard instrumentation in the pharmaceutical industry, the method validated here provides an alternate method for metal ion analysis by ESI-MS.  相似文献   

7.
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.  相似文献   

8.
We describe an automated gas chromatography/isotope-ratio mass spectrometry (GC/IRMS) method for the determination of the (18)O and position-resolved (15)N content of nitrous oxide at natural isotope abundance. The position information is obtained from successive measurement of the isotopic composition of the N(2)O(+) ion at m/z 44, 45, 46 and the NO(+) fragment ion at m/z 30, 31. The fragment ion analysis is complicated by a non-linearity in the mass spectrometer that has to be taken into account. Evaluation of the absolute peak areas allows for a simultaneous determination of the N(2)O mixing ratio for atmospheric samples. Samples with mixing ratios ranging from a few nmol/mol up to the percent level can be analyzed using different sample inlet systems. The high concentration inlet system provides an easy and quick method to carry out various diagnostic tests, in particular to perform realistic linearity tests. A gas chromatographic set-up with a split column and a backflush possibility improves analytical precision and excludes interferences by substances with long retention times from preceding runs. We also describe a new open split interface that uses only a single transfer capillary to the mass spectrometer for sample and reference gas.  相似文献   

9.
根据高场非对称波形离子迁移谱(FAIMS)系统的要求, 本文提出了一种新型敞开式直流电晕放电化学离子源. 该离子源主要由内线电极、外筒电极和牵引电极组成, 内、外电极半径分别是0.08、2 mm. 筒壁电极上开有对称的4个槽, 用于通入样品和牵引离子. 质谱实验结果表明, 该离子源能够在敞开环境下很好地离子化丙酮、乙醇、苯胺、N,N-二甲基甲酰胺、甲基磷酸二甲酯(DMMP)、乙酸乙酯、甲酸、乙酸、苯酚等正、负电性物质. 静电计测试实验结果说明该离子源能够稳定地产生离子电流. 通过分析不同时刻的谱图发现, 在不同时间点上产生的主要离子相同, 具有很好的稳定性. 利用感应耦合等离子体(ICP)工艺在硅片上加工了该离子源, 从而验证了该结构可以由微机电系统(MEMS)加工技术实现. 该离子源具有体积小、结构简单、无辐射、工作稳定等特点, 不仅可以满足FAIMS系统的要求, 还可用于敞开式质谱、微型质谱仪、离子迁移谱(IMS)等仪器.  相似文献   

10.
A pulsed triple ionization source, using a common atmosphere/vacuum interface and ion path, has been developed to generate different types of ions for sequential ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The triple ionization source typically consists of a nano-electrospray emitter for analyte formation and two other emitters, an electrospray emitter and an atmospheric pressure chemical ionization emitter or a second nano-electrospray emitter for formation of the two different reagent ions. The three emitters are positioned in a parallel fashion close to the sampling orifice of the tandem mass spectrometer. The potentials applied to each emitter are sequentially pulsed so that desired ions are generated separately in time and space. Sequential ion/ion reactions take place after analyte ions of interest and different set of reagent ions are sequentially injected into a linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed triple ionization source allows independent optimization of each emitter and can be readily coupled to any atmospheric pressure ionization interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be synchronized with the emitter potentials. Several sequential ion/ion reactions examples are demonstrated to illustrate the analytical usefulness of the triple ionization source in the study of gas-phase ion/ion chemistry.  相似文献   

11.
A radiofrequency (rf) glow-discharge (GD) ion source coupled to a commercial on-axis time-of-flight mass spectrometer (TOFMS) has been developed for the direct analysis of non-conducting samples. Different instrumental configurations of the rf-GD source, including the optional use of a sampler cone and the possibility of allowing electrical floating of the discharge, were evaluated first with a conducting sample. Higher ion signals were obtained when the GD was electrically floating and no sampler cone was used. A homogeneous glass was then analyzed using two different rf-GD configurations—with a sampler cone and discarding the use of the sampler cone. The atomic mass spectra obtained with the TOFMS using both configurations were compared. Analyte signals were systematically higher for the latest mode which avoids the sampler cone. The analytical capability of the proposed rf-GD–TOFMS system for the analysis of thick glasses, up to 6 mm, has been investigated in terms of sensitivity, isotopic ratio accuracy, and mass-resolving power. Different homogeneous glasses (including glasses as thick as 6 mm) have been analyzed and major and minor elements were detected. Isotope ratio accuracies of about ±1% and mass resolving powers of about 700 were observed.  相似文献   

12.
Many tasks in bulk analysis, micro analysis and depth profile analysis can be solved advantageously by laser ablation inductively coupled plasma mass spectrometry (Laser ICP-MS) in particular, when both the chemical and elemental distributions in the sample are to be determined. However, the analyst has to take into account that the analytical precision and accuracy of the Laser ICP-MS is influenced decisively by signal standardization, the homogeneity of the samples as well as calibration standards and the mass-spectrometric measuring mode, which is usually sequential when performed with scanning mass spectrometers such as quadrupol- or sector-based instruments. Using the ablated mass as standard, an excellent level of the analytical precision and accuracy (relative standard deviation R.S.D.<0.5%) has been obtained for homogeneous sample materials such as alloys. For inhomogeneous samples, such as pressed pellets, a statistical test is described, which is based upon the auto-correlation function to characterize the sample inhomogeneity. The application of the test allows us to calculate the representative mass for the quantitative analysis at previously defined analytical precision. In the instrumental part of the paper a new type of an ICP—time-of-flight (TOF) mass spectrometer—is described, constructed and built up in our laboratory. For fast signal counting an application-specific integrated circuit (ASIC) was developed, which permits a time resolution of 1 ns. The analytical performance of the TOF when used in combination with an ICP is demonstrated in terms of resolution, ion extraction rate, detection limits and dynamic range. The determination of 39K+ and 40Ca+ at trace level can be realized in a cool plasma condition (high central gas flow) only with a small interference by 40Ar+. Detection limits of 23 elements were measured with typical values in the lower nanograms per liter range. The ion extraction rates, measured for a sample mass of 1 ng in terms of counts per second divided by the relative isotope abundance, are one order of magnitude higher than those obtained with a quadrupol-based instrument.  相似文献   

13.
The distribution of the reactor water components lithium and boron in the oxide layer of in-reactor corroded Zircaloy fuel rod cladding specimens was investigated by depth profiling, line scanning and imaging analyses using secondary ion mass spectrometry (SIMS). The exact thickness of the oxide layer on the specimens was measured by scanning electron microscopy (SEM). The SIMS analyses showed that lithium and boron were not homogeneously distributed in the oxide layer. The peak concentration of lithium was found close to the reactor water/oxide interface of the specimens whereas boron showed no relevant variations in the bulk of the oxide layers investigated. The concentration of both elements decreased rapidly at a significant distance close to the oxide/metal interface. Conclusions were drawn to improve the understanding of the in-reactor corrosion process of fuel rod claddings consisting of zirconium based alloys.  相似文献   

14.
A heated capillary tube combined with a radio-frequency-only quadrupole has been coupled with a home- made, high-resolution orthogonal-injection, time-of-flight mass spectrometer to improve ion transmission from the atmospheric pressure to the low--pressure regions. With an electrospray ion source, the performance of the interface on the intensity of spectra was investigated. For electrospray ionization, the ion intensity detected on the time-of- flight mass spectrometer was seen to increase three-fold compared with an orifice interface. It has been shown that the enhanced ion inlet designs can not only increase the ion translation efficiency, but also improve the detection limits of the mass spectrometer. Coupling atmospheric pressure matrix-assisted laser desorption/ionization with the improved interface resulted in an instrument detection limit as low as 2.5 fmol.  相似文献   

15.
介绍了最新推出的全谱同时检测的电感耦合等离子体质谱(ICP-MS)仪器,它是目前市场上唯一的从6Li到238U质量范围同时测量的ICP质谱仪,实现了从时序扫描测量到全谱同时测量的新飞跃.其革命性技术的核心是双聚焦扇形场质谱仪与全新的能够同时俘获全部离子的检测器及其创新设计的离子透镜系统,展现出优越的性能和更广阔的应用前...  相似文献   

16.
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La0.6Sr0.35MnO3 matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) – as a surface analytical method – has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO2 layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.  相似文献   

17.
谭国斌  黄正旭  高伟  周振 《分析化学》2013,41(10):1614-1619
本实验室研制了国内首台宽离子能量检测范围飞行时间质谱仪。仪器采用紧凑式电子轰击源设计,配合离子透镜系统有效的调制离子流,飞行时间质量分析器采用了离子垂直引入式,双场加速和双场反射以及大尺寸MCP检测装置设计。仪器单离子信号半峰宽约2 ns,仪器分辨率优于1600FWHM,检测实际样品质量范围为1~127 amu(仪器理论质量检测上限优于800 amu),可检测离子能量范围优于2个数量级(3~140 eV)。若该TOF质量分析器与短瞬高压脉冲放电离子源耦合联用,可广泛应用于高能离子束的快速检测,如真空阴极放电对制备薄膜、离子注入材料的表征,导电材料的离子电荷态分布以及离子扩散速度的测定等。  相似文献   

18.
Summary An on-line combination of liquid chromatography, gas chromatography and mass spectrometry has been realized by coupling a quadrupole mass spectrometer to an LC-GC apparatus. Liquid chromatography was used for sample pretreatment of oil samples of different origin. The appropriate LC fraction, containing polycyclic aromatic hydrocarbons, was transferred to the gas chromatograph using a loop-type interface. After solvent evaporation through the solvent vapour exit and subsequent GC separation, the compounds were introduced into the mass spectrometer for detection and identification. The GC column was connected to a short piece of deactivated fused silica that protruded into the ion source. The total analytical set-up allowed the direct analysis of oil samples after dilution in n-pentane without any sample clean-up. Detection limits are about 40 pg in the full scan mode and about 1 pg with selective ion monitoring, i.e. 20 ppb and 0.5 ppb respectively.  相似文献   

19.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

20.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号