首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus spin-lattice relaxation was studied in aluminophosphate molecular sieves containing various concentrations of either framework or non-framework cobalt. The behaviour of nuclear magnetisation in the presence of these paramagnetic centres was described successfully in the limit of no spin-diffusion. The diffusionless regime was strongly indicated with non-exponential magnetisation recovery and was therefore easy to recognise. According to the model, spin-lattice relaxation rates depend on the square of cobalt concentration. Measured relaxation rates agreed well with calculations if effective cobalt concentration was considered rather than the average one. The latter was obtained by bulk elemental analysis, while the former was extracted from cobalt concentration depth-profiles measured with Auger electron spectroscopy. These measurements indicated that in impregnated samples containing non-framework cobalt there could be much more cobalt near the crystal surface than within the crystal. Because high cobalt concentration can lead to an invisible phosphorus, only nuclei deep within the crystal contribute to the NMR signal. In such a case, the effective concentration is simply the concentration of cobalt far from the crystal surface. In our case, two impregnated samples with different bulk cobalt concentrations exhibited equal relaxation rates. Previously, such a case was misinterpreted as a case, in which nuclear spin-lattice relaxation was independent of cobalt concentration. AES measurements, however, revealed, that although average concentrations of the two samples were different by a factor of two, their effective concentrations were equal and thus in complete agreement with observed relaxation rates.  相似文献   

2.
The nuclear spin-lattice relaxation of59Co in amorphous Fe-Co-B alloys was studied by NMR andthe results were compared with nuclear orientation measurements. The NMR relaxation rates were evaluated taking into account the electric quadrupole interaction. Then the results of both methods are in good agreement. It was confirmed that the spin-lattice relaxation is independent of the external magnetic field in the magnetically saturated samples andit was found that it does not depend on Co concentration.  相似文献   

3.
The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2–300 K for single crystals of Bi4Ge3O12 doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T 2* occurred upon doping the pure Bi4Ge3O12 sample. Unlike T 2*, the effective spin-lattice relaxation time T 1* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.  相似文献   

4.
We report results of ??Co nuclear magnetic resonance measurements on a single crystal of superconducting PuCoGa? in its normal state. The nuclear spin-lattice relaxation rates and the Knight shifts as a function of temperature reveal an anisotropy of spin fluctuations with finite wave vector q. By comparison with the isostructural members, we conclude that antiferromagnetic XY-type anisotropy of spin fluctuations plays an important role in mediating superconductivity in these heavy fermion materials.  相似文献   

5.
Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.  相似文献   

6.
We have studied the nuclear spin-lattice relaxation of Co nuclei in the Co concentration range from 1.6 ppm to 1%, using alloys containing radioactive60Co and a nuclear orientation-fast pulsed heating (NO-FH) method. In the ferromagnetic region, relatively fast relaxation is found, in agreement with an estimate based on NMR results. The observed concentration dependence of the relaxation rate is similar to that of FePd alloys. In the spin-glass regime, a moderate field dependence of the relaxation rates is seen, obeying a concentration-scaling law. At still lower concentrations, a transition to local-moment behavior is observed.  相似文献   

7.
We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.  相似文献   

8.
We report measurements of nuclear spin-lattice relaxation and dynamic polarization of protons in ethyleneglycol-alcohol mixtures at 9 kG and 4·2 K and 1·3 K. Comparison of experimental results with a proposed model of spin-lattice relaxation indicates that the role of dipolar and exchange reservoirs of paramagnetic ions in nuclear relaxation is not necessarily negligible, particularly in the presence of high concentration of paramagnetic impurities. The influence of methanol is to enhance the dynamic polarization of protons compared to pure ethyleneglycol, in the most favourable cases by almost 50% in our experimental conditions.  相似文献   

9.
Changes in nuclear spin-lattice relaxation rates that are induced by a freely diffusing paramagnetic relaxation agent are examined for a protein in solution and compared to the case where the protein binds to a membrane. In the solution case, the intramolecular cross-relaxation rates are modest and large differences are observed in the oxygen induced protein–proton relaxation rates. In the case where a dynamic equilibrium between solution and membrane-bound environments is established, the intramolecular 1H cross-relaxation rates for the protein protons increase dramatically because of the slow reorientational motion in the membrane-bound environment. As a consequence, all protein protons relax with nearly the same spin-lattice relaxation rate constants when bound to the membrane, and site specific relaxation effects of the diffusing paramagnet are suppressed. Slowly reorienting sites or rotationally immobilized sites sampled by observable molecules in vivo will demonstrate similar relaxation leveling effects.  相似文献   

10.
Transient nuclear magnetic resonance measurements of spin-lattice and spin-spin relaxation times have been carried out as a function of temperature and pressure on 3He adsorbed on two types of commercial zeolite. In addition, the number of atoms adsorbed on unit weights of zeolite was determined by spin counting. Mechanisms for spin-spin relaxation were provided by dipole interactions among helium spins and spin-lattice relaxation was probably due to atomic motion.  相似文献   

11.
ABSTRACT

The time evolution of the nuclear magnetisation of chemically exchanging systems in liquids is calculated for the pre-polarised fast field-cycling sequence of nuclear magnetic resonance (NMR) relaxometry. The obtained parameter expressions of the magnetisation allow one to derive the longitudinal relaxation rates and the residence times of the exchanging sites from the experiment. In the particular cases of slow and fast exchange, approximations leading to simple analytic expressions are derived. The theory takes account of the delay time necessary to ensure that the field for acquiring the signal is stable enough after its rapid jump from its relaxation value. The domains of mono-exponential or bi-exponential relaxation of the magnetisation are displayed in a concise way through 3D and 2D logarithmic plots of the population ratio of the exchanging sites and of their intrinsic relaxation times. The influence of the acquisition delay on the fitted values of the populations, residence times, and intrinsic relaxation times of the sites is emphasised in the case of the bi-exponential water proton relaxation observed in a tumour tissue.  相似文献   

12.
The 27Al nuclear magnetic resonance (NMR) response of a series of natural and synthetic corundum (α-Al2O3) samples is studied quantitatively by short-pulse excitation and frequency-stepped adiabatic half-passage (FSAHP). Using on- and off-resonance nutation NMR, it was established that the quadrupole coupling parameters of visible Al is identical in all samples. Remarkably, the relaxation behavior for the aluminum is very different in the various samples and has a marked effect on the quantitative response. In natural corundum samples the 27Al spin-lattice relaxation is very efficient as these samples contain paramagnetic impurities. As a result, however, the full signal could not be recovered, which is attributed to relaxation broadening of spins in the vicinity of these impurities. In synthetic samples, containing no impurities, the full signal could be recovered, although the relaxation behaviour appeared to depend strongly on the preparation method. We observed differences in the spin-lattice relaxation by a factor 20; the longest T1 was observed in a crushed single crystal. This implies that α-Al2O3 can only be used as a standard in quantitative analyses if it has been characterized thoroughly. Furthermore, the effective relaxation behaviour for different types of excitation is studied. Finally, a method to measure the spin-lattice relaxation of half-integer quadrupole nuclei is introduced, using a frequency-stepped adiabatic passage (FSAP) to invert the spin system.  相似文献   

13.
7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration of magnetic defects within the structure drastically changes the nuclear magnetization relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential, indicating glassy behavior of the magnetic defects. The stretched exponential function is described as arising from a distribution of 7Li nuclear spin-lattice relaxation rates and we present a model for the distribution in terms of the dynamics of the magnetic defects. Our results explain the origin of recent puzzling 7Li NMR literature data on LiV2O4 and our model is likely applicable to other glassy systems.  相似文献   

14.
The method of β-radiation detected nuclear magnetic resonance (β-NMR) was applied to 8Li in a 7Li3N single crystal. From NMR signals and spin-lattice relaxation rates the activation enthalpies for two distinct Li+ diffusion processes were deduced. Ultraslow diffusion corresponding to ionic jump rates down to 0.1 s?1 was observed. It could be confirmed that the static electric field gradients at the two inequivalent Li sites have opposite signs.  相似文献   

15.
We have carried out direction-dependent 59Co NMR experiments on a single crystal sample of the ferromagnetic superconductor UCoGe in order to study the magnetic properties in the normal state. The Knight-shift and nuclear spin-lattice relaxation rate measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy. We discuss that superconductivity induced by these magnetic fluctuations prefers spin-triplet pairing state.  相似文献   

16.
The (1)H NMR spin-lattice relaxation time, T(1), of saturated sands depended on the chemistry of the pore fluid, pore size distribution, and relaxivity of the surface. In the absence of paramagnetic impurities, surface relaxivities of quartz sand and silica gel samples of known porosity and surface area at any pH were lower than any previously reported values. Relaxation rate of the bulk pore fluid increased linearly with increasing Fe(III) concentration and varied with speciation of the ion. With only 0.01% of the silica surface sites occupied by sorbed Fe(III) ions, surface relaxivity increased by an order of magnitude. In addition, low concentrations of Fe(III)-bearing solid phases present as surface coatings or as separate mineral grains increased surface relaxation as much as two orders of magnitude. We believe that observations of relatively constant surface relaxivity in rocks by previous researchers were the result of consistently high surface concentrations of paramagnetic materials.  相似文献   

17.
The coupled spin-lattice and lattice-bath differential equations are solved numerically for the special case of terbium ethyl sulfate. The relaxation decay shows non-exponential behaviour if the lifetime τ of the phonons in direct contact with the spin-system is equal or greater thanT 1/b.T 1 is the spin-lattice relaxation time andb the ratio of the specific heats of the spin-system and the phonons in contact with the spin-system. The effective (measured) relaxation timeT eff depends on the initial disturbance of the spin-system. In a second paper measurements are published which show these predicted effects. In these experiments there has been found a severe phonon bottleneck in the terbium ethyl sulfate.  相似文献   

18.
The temperature dependence, between 10 and 120 K, of electron spin-lattice relaxation at X-band was analyzed for a series of eight pyrrolate-imine complexes and for ten other copper(II) complexes with varying ligands and geometry including copper-containing prion octarepeat domain and S100 type proteins. The geometry of the CuN4 coordination sphere for pyrrolate-imine complexes with R=H, methyl, n-butyl, diphenylmethyl, benzyl, 2-adamantyl, 1-adamantyl, and tert-butyl has been shown to range from planar to pseudo-tetrahedral. The fit to the recovery curves was better for a distribution of values of T1 than for a single time constant. Distributions of relaxation times may be characteristic of Cu(II) in glassy solution. Long-pulse saturation recovery and inversion recovery measurements were performed. The temperature dependence of spin-lattice relaxation rates was analyzed in terms of contributions from the direct process, the Raman process, and local modes. It was necessary to include more than one process to fit the experimental data. There was a small contribution from the direct process at low temperature. The Raman process was the dominant contribution to relaxation between about 20 and 60 K. Debye temperatures were between 80 and 120 K. For samples with similar Debye temperatures the coefficient of the Raman process tended to increase as gz increased, as expected if modulation of spin-orbit coupling is a major factor in relaxation rates. Above about 60 K local modes with energies in the range of 260-360 K (180-250 cm-1) dominated the relaxation. For molecules with similar geometry, relaxation rates were faster for more flexible molecules than for more rigid ones. Relaxation rates for the copper protein samples were similar to rates for small molecules with comparable coordination spheres. At each temperature studied the range of relaxation rates was less than an order of magnitude. The spread was smaller between 20 and 60 K where the Raman process dominates, than at higher temperatures where local modes dominate the relaxation. Spin echo dephasing time constants, Tm, were calculated from two-pulse spin echo decays. Near 10 K Tm was dominated by proton spins in the surroundings. As temperature was increased motion and spin-lattice relaxation made increasing contributions to Tm. Near 100 K spin-lattice relaxation dominated Tm.  相似文献   

19.
S K Gupta  S D Pandey 《Pramana》1981,17(3):271-278
The results of electrical conductivity measurements in heavily doped RbCl:CoCl2 crystals with 2500 and 6000 ppm of cobalt are being reported in this paper. The different regions of the conductivity plots for the crystals with the two concentrations of cobalt have been explained and relevant energy parameters determined. The crystals with 6000 ppm of cobalt have been found to contain two types of precipitates one of these being of the same type as that existing in RbCl crystals with 2500 ppm of cobalt while the other being of a different composition. Further, it has been found that the crystals appear blackened after heating during measurements. The blackening has been attributed to the expulsion of cobalt from the bulk of the crystal which forms an oxide at the surface.  相似文献   

20.
We report measurements of the 115In nuclear spin-lattice relaxation rate ( 1/T1) between T = 0.09 and 100 K in the new heavy fermion (HF) compound CeIrIn5. At 0.4 < or = T< or = 100 K, 1/T1 is strongly T-dependent, which indicates that CeIrIn5 is much more itinerant than known Ce-based HFs. We find that 1/T1T, subtracting that for LaIrIn5, follows a (1 / T+straight theta)3/4 variation with straight theta = 8 K. We argue that this novel feature points to anisotropic, due to a layered crystal structure, spin fluctuations near a magnetic ordering. The bulk superconductivity sets in at 0.40 K below which the coherence peak is absent and 1/T1 follows a T3 variation, which suggests unconventional superconductivity with line-node gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号