首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子力场进展   总被引:4,自引:0,他引:4  
分子力学(简称MM)是近年来化学家常用的一种计算方法。与量子力学从头计算和半经验方法相比,用分子力学处理大分子可以大大节省计算时间,而且,在大多数情况下,用分子力学方法计算得到的分子几何构型参数与实验值之间的差值可在实验误差范围之内。所以,分子力学是研究生物化学体系的有效和可行的手段。分子力学的核心是分子力场。本文介绍了分子力场的量子力学背景、分子力场和光谱力场之间的关系。分子力场的一般形式、分力  相似文献   

2.
Parameterization of a molecular dynamics force field is essential in realistically modeling the physicochemical processes involved in a molecular system. This step is often challenging when the equations involved in describing the force field are complicated as well as when the parameters are mostly empirical. ReaxFF is one such reactive force field which uses hundreds of parameters to describe the interactions between atoms. The optimization of the parameters in ReaxFF is done such that the properties predicted by ReaxFF matches with a set of quantum chemical or experimental data. Usually, the optimization of the parameters is done by an inefficient single‐parameter parabolic‐search algorithm. In this study, we use a robust metropolis Monte‐Carlo algorithm with simulated annealing to search for the optimum parameters for the ReaxFF force field in a high‐dimensional parameter space. The optimization is done against a set of quantum chemical data for MgSO4 hydrates. The optimized force field reproduced the chemical structures, the equations of state, and the water binding curves of MgSO4 hydrates. The transferability test of the ReaxFF force field shows the extend of transferability for a particular molecular system. This study points out that the ReaxFF force field is not indefinitely transferable. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
A novel dialkylurea gelator, 1-methyl-2,4-bis(N(')-octadecaneureido)benzene (designated as MBOB) was synthesized, which can turn some organic solvents into organogels at extremely low concentrations (<2 wt%). The (1)H NMR spectra of MBOB in solution (110 degrees C) and in the gel state (30 degrees C) indicate that intermolecular hydrogen bonding is the driving force for the self-assembly of MBOB. In the process of the self-assembly of MBOB, orientation of MBOB aggregates occurs under the influence of external fields, such as a centrifugal force and shearing force fields. The minimum gelation concentrations of MBOB in organic solvents under a centrifugal force field were significantly higher than those in the absence of a centrifugal force field, indicating a significant effect of the external field on the self-assembly of MBOB. Field emission scanning electron microscopy (FE-SEM) provided evidence for a significantly phase transition of the MBOB aggregates from an amorphous state in the absence of the external field to an oriented state under conditions of a centrifugal or shearing force during the gelation process. A self-assembled structure of MBOB is proposed based upon an X-ray diffraction (XRD) analysis and a molecular simulation. DSC analysis of the organogels indicates that the phase transition temperature increased from 58.5 degrees C in the absence of the external field to 63.3 degrees C under a centrifugal force field and 62.2 degrees C under a shearing force field. The enthalpy of the phase transition decreased from 3.1 J/g in the absence of an external field to 2.6 J/g under a centrifugal force field and 2.7 J/g under a shearing force field.  相似文献   

4.
5.
We have developed a new-generation Amber united-atom force field for simulations involving highly demanding conformational sampling such as protein folding and protein-protein binding. In the new united-atom force field, all hydrogens on aliphatic carbons in all amino acids are united with carbons except those on Calpha. Our choice of explicit representation of all protein backbone atoms aims at minimizing perturbation to protein backbone conformational distributions and to simplify development of backbone torsion terms. Tests with dipeptides and solvated proteins show that our goal is achieved quite successfully. The new united-atom force field uses the same new RESP charging scheme based on B3LYP/cc-pVTZ//HF/6-31g** quantum mechanical calculations in the PCM continuum solvent as that in the Duan et al. force field. van der Waals parameters are empirically refitted starting from published values with respect to experimental solvation free energies of amino acid side-chain analogues. The suitability of mixing new point charges and van der Waals parameters with existing Amber covalent terms is tested on alanine dipeptide and is found to be reasonable. Parameters for all new torsion terms are refitted based on the new point charges and the van der Waals parameters. Molecular dynamics simulations of three small globular proteins in the explicit TIP3P solvent are performed to test the overall stability and accuracy of the new united-atom force field. Good agreements between the united-atom force field and the Duan et al. all-atom force field for both backbone and side-chain conformations are observed. In addition, the per-step efficiency of the new united-atom force field is demonstrated for simulations in the implicit generalized Born solvent. A speedup around two is observed over the Duan et al. all-atom force field for the three tested small proteins. Finally, the efficiency gain of the new united-atom force field in conformational sampling is further demonstrated with a well-known toy protein folding system, an 18 residue polyalanine in distance-dependent dielectric. The new united-atom force field is at least a factor of 200 more efficient than the Duan et al. all-atom force field for ab initio folding of the tested peptide.  相似文献   

6.
A new method for deriving force fields for molecular simulations has been developed. It is based on the derivation and parameterization of analytic representations of the ab initio potential energy surfaces. The general method is presented here and used to derive a quantum mechanical force field (QMFF) for alkanes. It is based on sampling the energy surfaces of 16 representative alkane species. For hydrocarbons, this force field contains 66 force constants and reference values. These were fit to 128,376 quantum mechanical energies and energy derivatives describing the energy surface. The detailed form of the analytic force field expression and the values of all resulting parameters are given. A series of computations is then performed to test the ability of this force field to reproduce the features of the ab initio energy surface in terms of energies as well as the first and second derivatives of the energies with respect to molecular deformations. The fit is shown to be good, with rms energy deviations of less than 7% for all molecules. Also, although only two atom types are employed, the force field accounts for the properties of both highly strained species, such as cyclopropane and methylcyclopropanes, as well as unstrained systems. The information contained in the quantum energy surface indicates that it is significantly anharmonic and that important intramolecular coupling interactions exist between internals. The representation of the nature of these interactions, not present in diagonal, quadratic force fields (Class I force fields), is shown to be important in accounting accurately for molecular energy surfaces. The Class II force field derived from the quantum energy surface is characterized by accounting for these important intramolecular forces. The importance of each 4.2 to 18.2%. This fourfold increase in the second derivative error dramatically demonstrates the importance of bond anharmonicity in the ab initio potential energy surface. The Class II force field derived from the quantum energy surface is characterized by accounting for these important intramolecular forces. The importance of each of the interaction terms of the potential energy function has also been assessed. Bond anharmonicity, angle anharmonicity, and bond/angle, bond/torsion, and angle/angle/ torsion cross-term interactions result in the most significant overall improvement in distorted structure energies and energy derivatives. The implications of each energy term for the development of advanced force fields is discussed. Finally, it is shown that the techniques introduced here for exploring the quantum energy surface can be used to determine the extent of transferability and range of validity of the force field. The latter is of crucial importance in meeting the objective of deriving a force field for use in molecular mechanics and dynamics calculations of a wide range of molecules often containing functional groups in novel environments. © 1994 by John Wiley & Sons, Inc.  相似文献   

7.
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom‐type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
A force field developed in a series of overlay calculations for some weakly coupled conjugated systems is discussed. The force fieid is compared with other, mainly overlay force fields of related molecules, as this gives further evidence for the transferability of the force constants. In order to be of any use for large molecules the force field must be easy to transfer to related, more complicated molecules. The disadvantages of using individual force fields are also discussed.  相似文献   

9.
As the field of biomolecular structure advances, there is an ever-growing need for accurate modeling of molecular energy surfaces to simulate and predict the properties of these important systems. To address this need, a second generation amide force field for use in simulations of small organics as well as proteins and peptides has been derived. The critical question of what accuracy can be expected from calculations in general, and with this class II force field in particular, is addressed for structural, dynamic, and energetic properties. The force field is derived from a recent methodology we have developed that involves the systematic use of quantum mechanical observables. Systematic ab initio calculations were carried out for numerous configurations of 17 amide and related compounds. Relative energies and first and second derivatives of the energy of 638 structures of these compounds resulted in 140,970 ab initio quantum mechanical observables. The class II peptide quantum mechanical force field (QMFF), containing 732 force constants and reference values, was parameterized against these observables. A major objective of this work is to help establish the role of anharmonicity and coupling in improving the accuracy of molecular force fields, as these terms have not yet become an agreed upon standard in the ever more extensive simulations being used to probe biomolecular properties. This has been addressed by deriving a class I harmonic diagonal force field (HDFF), which was fit to the same energy surface as the QMFF, thus providing an opportunity to quantify the effects of these coupling and anharmonic contributions. Both force field representations are assessed in terms of their ability to fit the observables. They have also been tested by calculating the properties of 11 stationary states of these amide molecules. Optimized structures, vibrational frequencies, and conformational energies obtained from the quantum calculations and from both the QMFF and the HDFF are compared. Several strained and derivatized compounds including urea, formylformamide, and butyrolactam are included in these tests to assess the range of applicability (transferability) of the force fields. It was found that the class II coupled anharmonic force field reproduced the structures, energies, and vibrational frequencies significantly more faithfully than the class I harmonic diagonal force field. An important measure, rms energy deviation, was found to be 1.06 kcal/mol with the class II force field, and 2.30 kcal/mol with the harmonic diagonal force field. These deviations represent the error in relative configurational energy differences for strained and distorted structures calculated with the force fields compared with quantum mechanics. This provides a measure of the accuracy that might be expected in applications where strain may be important such as calculating the energy of a system as it approaches a (rotational) barrier, in ligand binding to a protein, or effects of introducing substituents into a molecule that may induce strain. Similar results were found for structural properties. Protein dynamics is becoming of ever-increasing interest, and, to simulate dynamic properties accurately, the dynamic behavior of model compounds needs to be well accounted for. To this end, the ability of the class I and class II force fields to reproduce the vibrational frequencies obtained from the quantum energy surface was assessed. An rms deviation of 43 cm−1 was achieved with the coupled anharmonic force field, as compared to 105 cm−1 with the harmonic diagonal force field. Thus, the analysis presented here of the class II force field for the amide functional group demonstrates that the incorporation of anharmonicity and coupling terms in the force field significantly improves the accuracy and transferability with regard to the simulation of structural, energetic, and dynamic properties of amides. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 430–458, 1998  相似文献   

10.
QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal‐organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three‐step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal‐organic frameworks (MOFs), QuickFF is used to determine force fields for MIL‐53(Al) and MOF‐5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
12.
Validity of a force field with explicit treatment of electrostatic polarization in a form of inducible point dipoles for computing acidity constants was tested by calculating absolute pK(a) values of substituted phenols, methanol, and imidazole in water with the molecular dynamics technique. The last two systems were selected as tyrosine and histidine side-chain analogues, respectively. The solvent was represented by an explicit polarizable water model. Similar calculations were also performed with a modified OPLS-AA nonpolarizable force field. The resulting pK(a) values were compared with available experimental data. While the nonpolarizable force field yields errors of about 5 units in the absolute pK(a) values for the phenols and methanol, the polarizable force field produces the acidity constant values within a ca. 0.8 units accuracy. For the case of imidazole, the fixed-charges force field was capable of reproducing the experimental value of pK(a) (6.4 versus the experimental 7.0 units), but only at a cost of dramatically underestimating dimerization energy for the imidazolium-water complex. At the same time, the polarizable force field yields an even more accurate result of pK(a) = 6.96 without any sacrifice of the accuracy in the dimerization energy. It has also been demonstrated that application of Ewald summation for the long-range electrostatics is important, and substitution of a simple cutoff procedure with Born correction for ions can lead to underestimation of absolute pK(a) values by more than 5 units. The accuracy of the absolute acidity constants computed with the polarizable force field is very encouraging and opens road for further tests on more diverse organic molecules sets, as well as on proteins.  相似文献   

13.
Recent extensions of potential energy functions used in empirical force field calculations have involved the inclusion of electronic polarizability. To properly include this extension into a potential energy function it is necessary to systematically and rigorously optimize the associated parameters based on model compounds for which extensive experimental data are available. In the present work, optimization of parameters for alkanes in a polarizable empirical force field based on a classical Drude oscillator is presented. Emphasis is placed on the development of parameters for CH3, CH2, and CH moieties that are directly transferable to long chain alkanes, as required for lipids and other biomolecules. It is shown that a variety of quantum mechanical and experimental target data are reproduced by the polarizable model. Notable is the proper treatment of the dielectric constant of pure alkanes by the polarizable force field, a property essential for the accurate treatment of, for example, hydrophobic solvation in lipid bilayers. The present alkane force field will act as the basis for the aliphatic moieties in an extensive empirical force field for biomolecules that includes the explicit treatment of electronic polarizability.  相似文献   

14.
The widely used CHARMM additive all‐atom force field includes parameters for proteins, nucleic acids, lipids, and carbohydrates. In the present article, an extension of the CHARMM force field to drug‐like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug‐like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present article in the context of the model systems, pyrrolidine, and 3‐phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all‐CHARMM” simulations on drug‐target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
A recently developed, general computer program that performs vibrational self-consistent field (VSCF) calculations for large molecules is described. The program, which we refer to as VSCF―95, requires as its only input a force field in mass-scaled normal coordinates. Currently, it is limited to a maximum of 200 normal modes, and the force field is limited to coupling terms involving a maximum of six normal modes, with a maximum order of six in any normal mode. As output the program returns VSCF energies for specified quantum states. We illustrate the code with two new applications. The first is to HCO, for which we use a full sixth-order force field. The second is to a model of the fullerene, C60, for which we have calculated a 75,731-term force field, which includes all anharmonic terms up to fifth order, and all two-mode coupling terms up to fourth order. © 1996 by John Wiley & Sons, Inc.  相似文献   

16.
A Kirkwood-Buff derived force field for amides   总被引:1,自引:0,他引:1  
  相似文献   

17.
A novel united-atom (UA) force field is proposed from our previously developed all-atom (AA) force field for the imidazolium-based ionic liquids by the introduction of a coarse-grained method. The Lennard-Jones parameters for CH(2) and CH(3) in alkyls are fitted to match the AA force field, and the partial atomic charges are re-fitted by the one conformation two-step RESP method. The force field is verified by molecular dynamics simulations of pure ionic liquids and the mixture of [bmim][BF(4)] and acetonitrile. The densities, self-diffusion coefficients, vaporization enthalpies, cohesive energy densities, and microscopic structures of both the pure components and mixtures are simulated. The simulated results from the UA force field agree well with those from the AA force field. In addition, the predictive capability of the UA force field for the liquid densities of [C(n)mim][PF(6)] is tested. The UA force field proposed in this work provides a useful tool with good accuracy and much less computational intensity for future molecular design of ionic liquids.  相似文献   

18.
An improved OPLS-AA force field for carbohydrates   总被引:1,自引:0,他引:1  
This work describes an improved version of the original OPLS-all atom (OPLS-AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5- and 1,6-interactions. This new model is tested first for improving the conformational energetics of 1,2-ethanediol, the smallest polyol. With a 1,5-scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio-derived data. Applying the new 1,5-scaling makes it also necessary to use a 1,6-scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS-AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D-glucose, D-mannose, and D-galactose, as well as of the methyl-pyranosides of D-glucose, D-mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS-AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10-ns molecular dynamics (MD) simulations of alpha-D-glucose and alpha-D-galactose the ratios for the three different conformations of the hydroxymethylene group and the average (3)J(H,H) coupling constants are derived and compared to experimental values. The results obtained for OPLS-AA-SEI force field are in good agreement with experiment whereas the properties derived for the OPLS-AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS-AA-SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups.  相似文献   

19.
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies.  相似文献   

20.
The vibrational spectra of beta-D-fructopyranose crystals have been recorded in the 4000-400 cm(-1) region using the infrared and in the 4000-20 cm(-1) region using the Raman. These spectra are used as an experimental basis in order to establish a force field for the beta-D-fructopyranose molecule in the crystalline state through a normal co-ordinates analysis. For this purpose, a modified Urey-Bradley-Shimanoushi force field was combined with an intermolecular potential energy function that includes the van-der-Walls interactions, the electrostatic terms, and an explicit hydrogen bond function. The force field parameters are derived from those of beta-D-glucose and are fitted so as to obtain a good agreement between the calculated and the observed frequencies. The results obtained demonstrate the reliability and the transferability of the set of parameters constituting the initial force field. The fitted force field reproduces the experimental spectra to a marked degree of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号