首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v?1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.  相似文献   

2.
Thermoanaerobacter cyclomaltodextrin glucanotransferase (CGTase) was immobilized using different supports and immobilization methods to study the effect on activity recovery. The enzyme covalently attached into glyoxyl-silica showed low activity recovery of 1.5%. The hydrophobic adsorption of the enzyme on Octadecyl-Sepabeads yielded also low activity recovery, 3.83%, and the enzyme could easily leak from the support at low ionic strength, although the immobilization yield was satisfactory, approximately 76%. The CGTase encapsulated in a sol–gel matrix gave an activity recovery of 6.94% and maximum cyclization activity at 60 °C, at pH 6.0. The half-time life at 60 °C, pH 6.0, in the presence of substrate was 100 min, which was lower than that of the free enzyme. The best activity recovery in this work (6.94%) is approximately five times smaller than that obtained previously using glyoxyl-agarose as support and covalent immobilization. Thus, the best support and method we tested so far for immobilization of CGTase is covalent attachment on glyoxyl-agarose.  相似文献   

3.
Penicillium occitanis xylanase 2 expressed with a His-tag in Pichia pastoris, termed PoXyn2, was immobilized on nickel-chelate Eupergit C by covalent coupling reaction with a high immobilization yield up to 93.49 %. Characterization of the immobilized PoXyn2 was further evaluated. The optimum pH was not affected by immobilization, but the immobilized PoXyn2 exhibited more acidic and large optimum pH range (pH 2.0–4.0) than that of the free PoXyn2 (pH 3.0). The free PoXyn2 had an optimum temperature of 50 °C, whereas that of the immobilized enzyme was shifted to 65 °C. Immobilization increased both pH stability and thermostability when compared with the free enzyme. Time courses of the xylooligosaccharides (XOS) produced from corncob xylan indicated that the immobilized enzyme tends to use shorter xylan chains and to produce more xylobiose and xylotriose initially. At the end of 24-h reaction, XOS mixture contained a total of 21.3 and 34.2 % (w/w) of xylobiose and xylotriose with immobilized xylanase and free xylanase, respectively. The resulting XOS could be used as a special nutrient for lactic bacteria.  相似文献   

4.

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0?±?0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

  相似文献   

5.
Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).  相似文献   

6.
The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.  相似文献   

7.
Preparation of chitosan nanoparticles as carrier for immobilized enzyme   总被引:2,自引:0,他引:2  
This work investigated the preparation of chitosan nanoparticles used as carriers for immobilized enzyme. The morphologic characterization of chitosan nanoparticles was evaluated by scanning electron microscope. The various preparation methods of chitosan nanoparticles were discussed and chosen. The effect of factors such as molecular weight of chitosan, chitosan concentration, TPP concentration, and solution pH on the size of chitosan nanoparticles was studied. Based on these results, response surface methodology was emploved. The results showed that solution pH, TPP concentration, and chitosan concentration significantly affected the size of chitosan nanoparticles. The adequacy of the predictive model equation for predicting the magnitude orders of the size of chitosan nanoparticles was verified effectively by the validation data. Immobilization conditions were investigated as well. The minimum particles size was about 42±5 nm under the optimized conditions. The optimal conditions of immobilization were as follow: one milligram of neutral proteinase was immobilized on chitosan nanoparticles for about 15 min at 40°C. Under the optimized conditions, the enzyme activity yield was 84.3%.  相似文献   

8.
Immobilization methods and carriers were screened for immobilization of Euglena gracilis extract with laminaribiose phosphorylase activity. The extract was successfully immobilized on three different carriers via covalent linkage. Suitable immobilization carriers were Sepabeads EC-EP/S and ECR 8209M with epoxy groups and ECR 8309M with amino groups as functional units. Immobilization on Sepabeads EC-EP/S resulted in highest retained activity (65%). The immobilizates were characterized for pH, temperature, and buffer molarity preferences. The immobilized enzyme lost 48% of its activity when used seven times. Together with sucrose phosphorylase, laminaribiose phosphorylase was successfully applied for bienzymatic production of laminaribiose from sucrose and glucose with a final laminaribiose concentration of 14.3 ± 2.1 g/L (20% yield).  相似文献   

9.
Proteases constitute one of the most important groups of industrial enzymes, accounting for at least 25% of the total enzyme sales, with two-thirds of the proteases produced commercially being of microbial origin (1). Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes or alternative, technologies, and the steadily increasing number of applications for immobilized enzymes. The general application of immobilized proteins and enzymes has played a central role in the expansion of biotechnology and synthesis-related industries. Proteases have been immobilized on natural and synthetic supports (2,3). In the present work, a protease from Bacillus polymyxa was partially purified with 80% ammonium sulfate precipitation followed by dialysis and chromatography using a diethylaminoethyl (DEAE)-cellulose ion exchange column. Immobilization was evaluated by using different adsorbents (chitin, chitosan, alginate, synthetic zeolite, and raw zeolite) and the storage stability and recycle of the immobilized protease determined. Immobilization yields were estimated to be 96% and 7.5%, by using alginate and chitosan, respectively, after, 24 h. The yield of the immobilization was 17% for alginate at 16h and the enzyme did not adsorb on the chitin, chitosan, synthetic zeolite, and raw zeolite.  相似文献   

10.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

11.
A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.  相似文献   

12.
Immobilization of a protease, Flavourzyme, by covalent binding on various carriers was investigated. Lewatit R258-K, activated with glutaraldehyde, was selected among the tested carriers, because of the highest immobilized enzyme activity. The optimization of activation and immobilization conditions was performed to obtain high recovery yield. The activity recovery decreased with increasing carrier loading over an optimal value, indicating the inactivation of enzymes by their reaction with uncoupled aldehyde groups of carriers. The buffer concentrations for carrier activation and enzyme immobilization were optimally selected as 500 and 50 mM, respectively. With increasing enzyme loading, the immobilized enzyme activity increased, but activity recovery decreased. Immobilization with a highly concentrated enzyme solution was advantageous for both the immobilized enzyme activity and activity recovery. Consequently, the optimum enzyme and carrier loadings for the immobilization of Flavourzyme were determined as 1.8 mg enzyme/mL and 0.6 g resin/mL, respectively.  相似文献   

13.
The synthesis of β-galactosyl xylitol derivatives using immobilized LacA β-galactosidase from Lactobacillus plantarum WCFS1 is presented. These compounds have the potential to replace traditional sugars by their properties as sweetener and taking the advantages of a low digestibility. The enzyme was immobilized on different supports, obtaining immobilized preparations with different activity and stability. The immobilization on agarose-IDA-Zn-CHO in the presence of galactose allowed for the conserving of 78% of the offered activity. This preparation was 3.8 times more stable than soluble. Since the enzyme has polyhistidine tags, this support allowed the immobilization, purification and stabilization in one step. The immobilized preparation was used in synthesis obtaining two main products and a total of around 68 g/L of β-galactosyl xylitol derivatives and improving the synthesis/hydrolysis ratio by around 30% compared to that of the soluble enzyme. The catalyst was recycled 10 times, preserving an activity higher than 50%. The in vitro intestinal digestibility of the main β-galactosyl xylitol derivatives was lower than that of lactose, being around 6 and 15% for the galacto-xylitol derivatives compared to 55% of lactose after 120 min of digestion. The optimal amount immobilized constitutes a very useful tool to synthetize β-galactosyl xylitol derivatives since it can be used as a catalyst with high yield and being recycled for at least 10 more cycles.  相似文献   

14.
Aspergillus niger NRC 107 xylanase and β-xylosidase were immobilized on various carriers by different methods of immobilization, including physical adsorption, covalant binding, ionic binding, and entrapment. The immobilized enzymes were prepared by physical adsorption on tannin-chitosan, ionic binding onto Dowex-50W, covalent binding on chitosan beads through glutaraldehyde, and entrapment in polyacrylamide had the highest activities. In most cases, the optimum pH of the immobilized enzymes were shifted to lower than those of free enzymes. The optimum reaction temperature of immobilized xylanase was shifted from 50°C to 52.5–65°C, whereas that of immobilized β-xylosidase was shifted from 45°C to 50–60°C. TheK m values of immobilized enzymes were higher than those of native enzymes. The operational stability of the immobilized enzymes was evaluated in continuous operation in packed-bead column-type reactors. The enzymes covalently bounded to chitosan showed the highest operational stability. However, the enzymes immobilized by physical adsorption or by ionic binding showed a low operational stability. The enzymes entrapped in polyacrylamide exhibited lower activity, but better operational stability.  相似文献   

15.
Cellulase and xylanase from Trichoderma reesei were immobilized simultaneously on Eudragit L-100, a reversibly soluble polymer. The effects of polymer concentration and polymer precipitation pH on enzyme activity recovery were investigated at an enzyme complex concentration of 1%. The immobilization mechanism of cellulase and xylanase on the polymer was discussed. An activity recovery of 75% and 59% was obtained for the cellulase and the xylanase, respectively, under the condition of a polymer concentration at 2% and a polymer precipitation pH at 4.0. Most zymoproteins might be connected to the polymer by electrostatic attraction in a medium of pH 4.8. In addition, the covalent coupling between the zymoproteins and the polymer was demonstrated by the infrared spectrograms. It was suggested that dehydration–condensation reaction occurred between the zymoproteins and the polymer during the immobilization.  相似文献   

16.
固定化过氧化氢酶的制备及其抗氧化作用   总被引:1,自引:0,他引:1  
以烟用醋酸纤维的生物化学改性为目标,研究了以壳聚糖为载体时,吸附交联固定化过氧化氢酶的条件,并考察了固定化酶的性质。结果表明,固定化的最佳条件为:加酶量(酶活2×104C IU/m l)6m l,3%壳聚糖20m l,乙二醛浓度6%(w/v),交联剂用量100m l,吸附时间0.5 h,交联时间2.5h,酶活收率可达42.9%。过氧化氢酶固定化后,动学参数Km值为61.7mmol/L;对活性氧具有较好清除作用。  相似文献   

17.
Carboxypeptidase A (CPA) is a metalloexopeptidase that catalyzes the hydrolysis of the peptide bonds that are adjacent to the C-terminal end of a polypeptide chain. The enzyme preferentially cleaves over C-terminal L-amino acids with aromatic or branched side chains. This is of main importance for food industry because it can be employed for manufacturing functional foods from different protein sources with reduced hydrophobic amino acid content for patients with deficiencies in the absorption or digestion of the corresponding amino acids. In that way, strategies for effective multipoint covalent immobilization of CPA metalloenzyme on chitosan beads have been developed. The study of the ability to produce several chemical modifications on chitosan molecules before, during and after its coagulation to form carrier beads lead in a protective effect of the polymer matrix. The chemical modification of chitosan through the use of an N-alkylation strategy produced the best derivatives. N-alkyl chitosan derivative beads with D-fructose presented values of 0.86 for immobilization yield, 314.6 IU g?1 bead for initial activity of biocatalyst and were 5675.64-fold more stable than the free enzyme at 55 °C. Results have shown that these derivatives would present a potential technological application in hydrolytic processes due to both their physical properties, such as low swelling capacity, reduced metal chelation ability and bulk mesoporosity, and increased operational stability when compared with soluble enzyme.  相似文献   

18.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

19.
Immobilization-stabilization of Penicillin G acylase fromEscherichia coli   总被引:2,自引:0,他引:2  
We have developed a strategy for immobilization-stabilization of penicillin G acylase from E. coli, PGA, by multipoint covalent attachment to agarose (aldehyde) gels. We hve studied the role of three main variables that control the intensity of these enzyme-support multiinteraction processes: 1. surface density of aldehyde groups in the activated support; 2. temperature; and 3. contact-time between the immobilized enzyme and the activated support prior to borohydride reduction of the derivatives. Different combinations of these three variables have been tested to prepare a number of PGA-agarose derivatives. All these derivatives preserve 100% of catalytic activity corresponding to the soluble enzyme that has been immobilized but they show very different stability. The less stable derivative has exactly the same thermal stability of soluble penicillin G acylase and the most stable one is approximately 1,400 fold more stable. A similar increase in the stability of the enzyme against the deleterious effect of organic solvents was also observed. On the other hand, the agarose aldehyde gels present a very great capacity to immobilize enzymes through multipoint covalent attachment. In this way, we have been able to prepare very active and very stable PGA derivatives containing up to 200 International Units of catalytic activity per mL. of derivative with 100% yields in the overall immobilization procedure.  相似文献   

20.
Reduction of disulfide bonds and introduction of ??de novo?? thiol groups in cyclodextrin glucantransferase from Thermoanaerobacter sp. were assessed in order to perform reversible covalent immobilization onto thiol-reactive supports (thiolsulfinate-agarose). Only the thiolation process dramatically improved the immobilization yield, from 0?% for the native and reduced enzyme, up to nearly 90?% for the thiolated enzyme. The mild conditions of the immobilization process (pH 6.8?C7.0 and 22?°C) allowed the achievement of 100?% coupling efficiencies when low loads were applied. Ionic strength was a critical parameter for the immobilization process; for high activity recoveries, 50?mM phosphate buffer supplemented with 0.15?M NaCl was required. The kinetic parameters, pH and thermal stabilities for the immobilized biocatalyst were similar to those for the native enzyme. For ??-cyclization activity, optimal pH range and temperature were 4.0?C5.4 and 85?°C. The possibility of reusing the support was demonstrated by the reversibility of enzyme?Csupport binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号