首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of organic matter and fill time on anaerobic sequencing batch reactor (5 L, 30°C, 8-h cycles, 50 rpm) efficiency has been analyzed. Organic matter was increased by the influent concentration. Fill times investigated were in the batch mode and fed-batch followed by batch. In the batch mode organic matter removal were 93%, 81%, and 66% for influent concentration of 500, 1,000, and 2,000 mgCOD/L (0.6, 1.29, and 2.44 gCOD/L.d), respectively. At 3,000 mgCOD/L (3.82 gCOD/L.d) operational stability could not be achieved. Removal efficiency was improved by increasing the fill time, and was 85% for the 1,000 mgCOD/L condition and fill times of 2 and 4 h, and 80 and 77% for the 2,000 mgCOD/L condition and fill times of 2 and 4 h, respectively. Hence, gradual feeding seemed to improve and to smooth the profiles of organic matter and volatile acids along the cycle with 78 to 96 NmLCH4/gCOD.  相似文献   

2.
A mechanically stirred anaerobic sequencing batch reactor (5 L, 30 °C) containing granular biomass was used to treat the effluent of an industrial biodiesel production process with the purpose to produce methane. Process stability and efficiency were analyzed as a function of applied volumetric organic load (AVOL of 1,000 to 3,000 mgCOD/L), reactor feed time, and cycle length (8-h cycles with 10-min or 4-h feeding and 4-h cycles with 10-min or 2-h feeding). Batch operations (B) with 1,000 to 3,000 mgCOD/L involved 10-min feeding/discharge: (1) 1.0-L influent with 4-h cycle and (2) 2.0-L influent with 8-h cycle. Fed-batch operations (FB) with 1,000 to 3,000 mgCOD/L involved 10-min discharge and the following feeding: (1) 1.0-L influent in 2 h with 4-h cycle and (2) 2.0-L influent in 4 h with 8-h cycle. At 1,000 mgCOD/L (AVOL of 18 to 1.29 gCOD/L?day), kinetic parameter values were 1.03 and 0.92 h-1 at conditions B-1000-4 h and FB-1000-8/4 h, respectively. At both conditions, removal efficiency was 88 %, and cycle length could be reduced to 3 h (B-1000-4 h) and 5 h (FB-1000-8/4 h). At 2,000 mgCOD/L (AVOL of 2.38 to 2.52 gCOD/L?day), kinetic parameter values were 1.08 and 0.99 h-1 at conditions B-2000-4/2 h and FB-2000-8/4 h, respectively, and removal efficiencies were 83 and 81 %. Cycle length could be reduced to 3 h (B-2000-4/2 h) and 6 h (FB-2000-8/4 h). At 3,000 mgCOD/L (AVOL of 3.71 to 3.89 gCOD/L?day), conditions allowing stable operation were B-3000-4 h, FB-3000-8/4 h, and FB-3000-4/2 h. Stability could not be obtained at condition B-3000-8 h, and the best results were obtained at condition FB-3000-8/4 h. Specific methane production ranged from 41.1 to 93.7 NmLCH4/gCOD, demonstrating reactor application potential and operation flexibility.  相似文献   

3.
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 °C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.  相似文献   

4.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

5.
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m3 mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m3 sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.  相似文献   

6.
An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand?(COD)?L?1 and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L?1 day?1. For AR-EPHG treatment, concentration of 4,000 mg COD L?1 and 4-h cycle length (7.21 g COD L?1 day?1) were used. For AR-S treatment, concentration was 4,000 mg COD L?1 day?1 and cycle lengths were 8 (7.04 g COD L?1 day?1) and 12 h (4.76 g COD L?1 day?1). The condition of 8.22 g COD L?1 day?1 (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L?1 day?1, yield between produced methane and removed organic material of 0.016 mol CH4?g COD?1, CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4?m?3 day?1. In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.  相似文献   

7.
The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L−1 day−1) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L−1 day−1 were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L−1 day−1, highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L−1 day−1, organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.  相似文献   

8.
An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m?3 day?1), which were varied according to the influent concentration (3,600 and 5,400 mg COD L?1) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m?3 day?1, the highest daily production rate (0.139 mol H2?day?1) was achieved at AVOL of 18.0 kg COD m?3 day?1, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H2?kg SUC?1, respectively, at AVOL of 13.5 kg COD m?3 day?1. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.  相似文献   

9.
In this work, the use of organic fraction from municipal solid waste (MSW) as substrate for ethanol production based on enzymatic hydrolysis was evaluated. MSW was subjected to a thermal pretreatment (active hygienization) at 160?°C from 5 to 50 min. The organic fiber obtained after 30 min was used as substrate in a simultaneous saccharification and fermentation (SSF) and fed-batch SSF process using cellulases and amylases. In a fed-batch mode with 25% (w/w) substrate loading, final ethanol concentration of 30 g/L was achieved (60% of theoretical). In these conditions, more than 160 L of ethanol per ton of dry matter could be produced from the organic fraction of MSW.  相似文献   

10.
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l−1 day−1) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 ± 1°C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l−1 day−1, change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l−1 day−1, reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l−1 day−1 the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l−1 day−1 caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.  相似文献   

11.
The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.66 to 2.88 g of chemical oxygen demand (COD)/(L x d) were applied by using influent concentrations from 550 to 3,600 mg of COD/L in 8- and 12-h cycles. Reactor stability was maintained for VOLs from 0.66 to 2.36 g of COD/(L x d), with organic matter removal efficiencies for filtered samples (epsilonF) between 84 and 88%. For VOLs from 0.78 to 2.36 g of COD/(L x d) at an influent concentration of 2,000 mg of COD/L, when cycle length was reduced from 12 to 8 h, epsilonF did not vary, yet showed a very distinct behavior from the other conditions. In addition, two operation strategies were studied for VOLs with approximately similar values of 2.36 and 2.08 g of COD/(L x d). One involved operation with an influent concentration of 2,000 mg of COD/L and an 8-h cycle, whereas the other involved an influent concentration of 2,600 mg of COD/L and a 12-h cycle. Only the former resulted in system stability and efficiency. These results indicate that besides organic load, influent concentration and cycle length play a significant role in ASBR systems.  相似文献   

12.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

13.
The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L. Operation temperatures were 15, 20, 25, 30, and 35°C. At 25, 30, and 35°C, organic matter removal efficiencies for filtered samples ranged from 81 to 83%. At lower temperatures, namely 15 and 20°C, removal efficiency decreased significantly to 61 and 65%, respectively. A first-order model could be fitted to the experimental concentration profile values. The first-order kinetic parameter value of this model varied from 0.46 to 0.81 h1 considering the lowest and highest temperature studied. Moreover, analysis of the removal profile values allowed fitting of an Arrhenius-type equation with an activation energy of 5715 cal/mol.  相似文献   

14.
This study investigated the feasibility to produce biohydrogen of a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) treating sucrose-based synthetic wastewater. The bioreactor performance (30 °C) was evaluated as to the combined effect of fill time (2, 1.5, and 1 h), cycle length (4, 3, and 2 h), influent concentration (3,500 and 5,250 mg chemical oxygen demand (COD)?L?1) and applied volumetric organic load (AVOLCT from 9.0 to 27.0 g COD L?1 d?1). AVOLs were varied according to influent concentration and cycle length (t C). The results showed that increasing AVOLCT resulted in a decrease in sucrose removal from 99 to 86 % and in improvement of molar yield per removed load (MYRLS.n) from 1.02 mol H2?mol carbohydrate?1 at AVOLCT of 9.0 g COD L?1 d?1 to maximum value of 1.48 mol H2?mol carbohydrate?1, at AVOLCT of 18.0 g COD L?1 d?1, with subsequent decrease. Increasing AVOLCT improved the daily molar productivity of hydrogen (MPr) from 15.28 to 49.22 mol H2?m?3 d?1. The highest daily specific molar productivity of hydrogen (SMPr) obtained was 8.71 mol H2?kg TVS?1 d?1 at an AVOLCT of 18.0 g COD L?1 d?1. Decreasing t C from 4 to 3 h decreased sucrose removal, increased MPr, and improved SMPr. Increasing influent concentration decreased sucrose removal only at t C of 2 h, improved MYRLS,n and MPr at all t C, and also improved SMPr at t C of 4 and 3 h. Feeding strategy had a significant effect on biohydrogen production; increasing fill time improved sucrose removal, MPr, SMPr, and MYRLS,n for all investigated AVOLCT. At all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric, and propionic acids. Increasing fill time resulted in a decrease in ethanol concentration.  相似文献   

15.
Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90?±?3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m2.  相似文献   

16.
The U(VI) removal from aqueous solutions (concentration range 125–2,000 mg/L, pH 3) by raw and NaOH-modified power plant ash was investigated by means of a batch method under the following experimental conditions: NaOH concentration 5 M, contact time 1 h, respectively 4 h, temperature 70, 90 °C. The amount of sorbed uranium was determined spectrophotometricaly using the Arsenazo III method. The sorbents were examined prior and after the sorption experiments by scanning electron microscopy/energy dispersive spectroscopy. Typical sorption isotherms were calculated and modeled by the Langmuir and Freundlich equations. The experimental data showed that all materials can remove considerable amounts of uranium from acidic aqueous solutions. The maximum removal efficiency (q max) values obtained, are 126 mg U/g for raw ash and 206 mg U/g for NaOH-modified. Sorption kinetics measurements were performed at 298, 308 and 323 K and thermodynamic parameters were calculated. The kinetic data obey a pseudo-second order equation.  相似文献   

17.
Clostridium beijerinckii BA101 (mutant strain) and C. beijerinckii 8052 (wild type) were compared for substrate and butanol inhibition. The wild-type strain is more strongly inhibited by added butanol than is the mutant strain. Acetone and butanol were removed from a fed-batch reactor inoculated with C. beijcrinckii BA101 by pervaporation using a silicone membrane. In the batch reactor, C. beijerinckii BA101 produced 25.3 g/L of total solvents, whereas in the fermentation-recovery experiment it produced 165.1 g/L of total solvents. Solvent productivity increased from 0.35 (batch reactor) to 0.98 g/L·h (fed-batch reactor). The fed-batch reactor wasfed with 500 g/L of glucose-based P2 medium. Acetone selectivities ranged from 2 to 10 whereas butanol selectivities ranged from 7 to 19. Total flux varied from 26 to 31 g/m2·h.  相似文献   

18.
Hydrogen (H2) production from the organic fraction of solid waste such as fruit and vegetable waste (FVW) is a novel and feasible energy technology. Continuous application of this process would allow for the simultaneous treatment of organic residues and energy production. In this study, batch experiments were conducted using glucose as substrate, and data of H2 production obtained were successfully adjusted by a logistic model. The kinetic parameters (μ max?=?0.101 h?1, K s?=?2.56 g/L) of an H2-producing microbial culture determined by the Monod and Haldane–Andrews growth models were used to establish the continuous culture conditions. This strategy led to a productive steady state in continuous culture. Once the steady state was reached in the continuous reactor, a maximum H2 production of 700 mL was attained. The feasibility of producing H2 from the FVW obtained from a local market in Mexico City was also evaluated using batch conditions. The effect of the initial FVW concentration on the H2 production and waste organic material degradation was determined. The highest H2 production rate (1.7 mmol/day), the highest cumulative H2 volume (310 mL), and 25 % chemical oxygen demand (COD) removal were obtained with an initial substrate (FVW) concentration of 37 g COD/L. The lowest H2 production rates were obtained with relatively low initial substrate concentrations of 5 and 11 g COD/L. The H2 production rates with FVW were also characterized by the logistic model. Similar cumulative H2 production was obtained when glucose and FVW were used as substrates.  相似文献   

19.
Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76?±?14.5 ml/g CODremoved and volumetric substrate uptake rate (?rS) of 16.51?±?4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25?±?3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21?±?0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78?±?3.8 ml/g CODremoved) and ?rS of 21.74?±?1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.  相似文献   

20.
Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40 % (v/v), and a filling time of 6 h, which resulted in a 92.20 % yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75 % and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h?1, with K I and K s values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号