首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi – Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 – using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.  相似文献   

2.
Propionic acid (PA) is widely used as additive in animal feed and also in the manufacturing of cellulose-based plastics, herbicides, and perfumes. Salts of propionic acid are used as preservative in food. PA is mainly produced by chemical synthesis. Nowadays, PA production by fermentation of low-cost industrial wastes or renewable sources has been an interesting alternative. In the present investigation, PA production by Propionibacterium acidipropionici ATCC 4965 was studied using a basal medium with sugarcane molasses (BMSM), glycerol or lactate (BML) in small batch fermentation at 30 and 36 degrees C. Bacterial growth was carried out under low dissolved oxygen concentration and without pH control. Results indicated that P. acidipropionici produced more biomass in BMSM than in other media at 30 degrees C (7.55 g l(-1)) as well as at 36 degrees C (3.71 g l(-1)). PA and biomass production were higher at 30 degrees C than at 36 degrees C in all cases studied. The best productivity was obtained by using BML (0.113 g l(-1) h(-1)), although the yielding of this metabolite was higher when using glycerol as carbon source (0.724 g g(-1)) because there was no detection of acetic acid. By the way, when using the other two carbon sources, acetic acid emerged as an undesirable by-product for further PA purification.  相似文献   

3.
Conversion of lignocellulosic substrates is limited by several factors, in terms of both the enzymes and the substrates. Better understanding of the hydrolysis mechanisms and the factors determining their performance is crucial for commercial lignocelluloses-based processes. Enzymes produced on various carbon sources (Solka Floc 200, lactose and steam-pre-treated corn stover) by Trichoderma reesei Rut C30 were characterised by their enzyme profile and hydrolytic performance. The results showed that there was a clear correlation between the secreted amount of xylanase and mannanase enzymes and that their production was induced by the presence of xylan in the carbon source. Co-secretion of α-arabinosidase and α-galactosidase was also observed. Secretion of β-glucosidase was found to be clearly dependent on the composition of the carbon source, and in the case of lactose, 2-fold higher specific activity was observed compared to Solka Floc and steam-pre-treated corn stover. Hydrolysis experiments showed a clear connection between glucan and xylan conversion and highlighted the importance of β-glucosidase and xylanase activities. When hydrolysis was performed using additional purified β-glucosidase and xylanase, the addition of β-glucosidase was found to significantly improve both the xylan and glucan conversion.  相似文献   

4.
Liu  Huan  Zeng  Liping  Jin  Yuhan  Nie  Kaili  Deng  Li  Wang  Fang 《Applied biochemistry and biotechnology》2019,188(3):741-749

Cellulase is an important enzyme that can be used to breakdown lignocellulose into glucose. Microbulbifer hydrolyticus IRE-31(ATCC 700072) is a kind of marine bacterium, which could grow in high salinity medium and has fast-strong growth ability. In this study, a novel strain was screened from Microbulbifer hydrolyticus IRE-31 through mutations to produce cellulase. The effect of different carbon sources on the growth as well as on the production of cellulase of the new strain was studied. Carboxymethyl-cellulase (CMCase) activity selected to represent cellulase was proven to be effectively promoted while xylose, galactose, and melibiose as well as glucose were used as carbon sources. When xylose and glucose were chosen to be further investigated, 472.57 U/L and 266.01 U/L CMCase activity were obtained from 30 g/L glucose and 10 g/L xylose, respectively. These results clarified the effect of different carbon sources on the production of cellulase, which laid a good foundation for the further research in the production of cellulase by marine bacteria.

  相似文献   

5.
The production of six naphthoquinone derivatives, erythrostominone, deoxyerythrostominone, 4-O-methyl erythrostominone, epierythrostominol, deoxyerythrostominol, and 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa- 1,3-dienyl)-1,4-naphthoquinone, was examined during the growth of Cordyceps unilateralis BCC 1869 on different carbon and nitrogen sources. Erythrostominone production by the fungus accounted for more than 50% of total naphthoquinones, but production of each of the other five derivatives accounted for less than 20% of total naphthoquinones. The highest volumetric production rate of erythrostominone and overall naphthoquinone production rate were obtained on mannose as a sole carbon source and ammonium sulfate as a sole nitrogen source (4922.4 +/- 118.8 mg/[L.d] and 5.03 g/[L.d], respectively). The highest growth rate was obtained on arabinose (0.043 h-1), whereas the maximum overall naphthoquinone concentration was obtained on lactose (2 g/L) at 237 h. These naphthoquinones were produced with no pH control and were first detected at a pH of about 3.0 to 4.0. These results suggest that carbon and nitrogen influenced directly the production of naphthoquinones.  相似文献   

6.
7.
不同碳源制备的介孔碳分子筛的性能研究   总被引:1,自引:0,他引:1  
以介孔分子筛SBA-15为模板剂,分别采用蔗糖、糠醇和酚醛树脂作为碳源制备介孔碳分子筛.用TGA、XRD、N2吸附-脱附和TEM对制备的样品进行了表征和比较.结果表明,三种碳源制备的介孔碳分子筛的结构有序性明显不同.用蔗糖为碳源能够得到结构高度有序的介孔碳分子筛,其比表面积和孔容最大,分别为1 422 m2·g和1.15 cm3·g;用糠醇为碳源制备的样品次之;用普通酚醛树脂为碳源制备的样品其结构有序性最差.  相似文献   

8.
Since the discovery in 19911, carbon nanotubes have been the subject of intensive research due to their extraordinary mechanical and electronic properties2-7. However, lack of sufficient amount of materials limited the study of the fundamental properties and development of more practical applications. It is highly desirable to have large quantities of pure nanotubes. To date, few methods have been developed for the production of high-quality tubes which can adapted to industrial production …  相似文献   

9.
以不同二氧化钛为原料, 用水热法制备一维钛酸盐纳米材料. 原料一次粒径和晶体结构对一维纳米钛酸盐的形貌和结构的影响很大. 原料的一次粒径越小, 反应过程中产物的形貌和晶相转变越快; 纯锐钛矿相有利于钛酸盐纳米管的形成, 而少量金红石相则有利于纳米管向纳米线的进一步转变和晶相转变.  相似文献   

10.
11.
Multiwall carbon nanotubes have been prepared by catalytic chemical vapor deposition (CCVD) method in high yield using various metals supported on different supports. Measurements by transmission electron microscopy (TEM) revealed the presence of high quality nanotubes on each catalyst, however, comparing the different catalysts in nanotube production it can be stated that beyond metals, the support also affects both the quality and the quantity of nanotubes.  相似文献   

12.
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.  相似文献   

13.
Ferulic acid (FA), which is present in the cell walls of some plants, is best known for its antioxidant property. By combining a commercial enzyme that shows FA esterase activity with several Streptomyces carbohydrate-hydrolyzing enzymes, we succeeded in enhancing the enzymatic production of FA from defatted rice bran. In particular, the combination of three xylanases, an α-l-arabinofuranosidase, and an acetyl xylan esterase from Streptomyces spp. produced the highest increase in the amount of released FAs among all the enzymes in the Streptomyces enzymes library. This enzyme combination also had an effect on FA production from other biomasses, such as raw rice bran, wheat bran, and corncob.  相似文献   

14.
The production of cellulolytic enzymes by the fungus Aspergillus phoenicis was investigated. Grape waste from the winemaking industry was chosen as the growth substrate among several agro-industrial byproducts. A 2 × 2 central composite design was performed, utilizing the amount of grape waste and peptone as independent variables. The fungus was cultivated in submerged fermentation at 30 °C and 120 rpm for 120 h, and the activities of total cellulases, endoglucanases, and β-glucosidases were measured. Total cellulases were positively influenced by the linear increase of peptone concentration and decrease at axial concentrations of grape waste and peptone. Maximum activity of endoglucanase was observed by a linear increase of both grape waste and peptone concentrations. Concentrations of grape waste between 5 and 15 g/L had a positive effect on the production of β-glucosidase; peptone had no significant effects. The optimum production of the three cellulolytic activities was observed at values near the central point. A. phoenicis has the potential for the production of cellulases utilizing grape waste as the growth substrate.  相似文献   

15.
Ajuga reptans cells are cultivated and used for production of invertase. These plant cells are immobilized by a sol-gel SiO2 membrane, which is built up directly on the cell surface by exposure to a gaseous flow of silicon alcoxide precursors. The immobilization modifies the metabolic activity of cells, resulting in a 40-fold increase in invertase production with respect of free cells. Results concerning total release of proteins, cell growth and produced invertase activity are discussed, considering the absence of breeding, induced by SiO2 immobilization, the prominent factor promoting the observed exceptional increase in invertase productivity.  相似文献   

16.
Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H2/mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.  相似文献   

17.
Most biosurfactants are obtained using costly culture media and purification processes, which limits their wider industrial use. Sustainability of their production processes can be achieved, in part, by using cheap substrates found among agricultural and food wastes or byproducts. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of surfactin production by Bacillus subtilis #309. The culture medium containing soap-derived waste glycerol led to the best surfactin production, reaching about 2.8 g/L. To the best of our knowledge, this is the first report describing surfactin production by B. subtilis using stearin and soap wastes as carbon sources. A complete chemical characterization of surfactin analogs produced from the different waste glycerol samples was performed by liquid chromatography–mass spectrometry (LC-MS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the surfactin produced in the study exhibited good stability in a wide range of pH, salinity and temperatures, suggesting its potential for several applications in biotechnology.  相似文献   

18.
碳纳米管促进氧化还原蛋白质和酶的直接电子转移   总被引:6,自引:1,他引:6  
蔡称心  陈静 《电化学》2004,10(2):159-167
将血红蛋白(Hb)、辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)分别固定在经碳纳米管修饰的玻碳电极(CNT/GC)上,制成Hb CNT/GC、HRP CNT/GC和GOx CNT/GC电极.Hb、HRP和GOx在CNT/GC电极表面均能发生有效和稳定的直接电子转移反应,其相应的循环伏安曲线均显示出一对几近对称的氧化还原峰;在60mV/s下,其式量电位E0'分别为-0.343V、-0.319V和-0.456V(vs.SCE,pH6.9),且不随扫速而变;以上三者在CNT/GC电极表面直接电子转移的表观速率常数ks依次为1.25±0.25、2.07±0.56和1.74±0.42s-1;根据式量电位E0'随缓冲溶液pH值的变化关系,确知在CNT/GC电极上,Hb或HRP发生的直接电化学遵从(1e+1H+)电极过程机理,而GOx发生的直接电化学反应则遵从(2e+2H+)机理.此外,固定在CNT/GC电极表面的Hb、HRP和GOx也同时表现出对各自底物的生物电催化活性.由本文制备的碳纳米管修饰电极及其固定生物蛋白质(酶)的方法具有简单、易于操作等优点,并可用于对其它生物氧化还原蛋白质和酶的直接电子转移测试.  相似文献   

19.
Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.  相似文献   

20.
Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号