首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Photooxidation of 4-amorphen-11-ol (1), recently reported as one of the major sesquiterpene natural products from the medicinal plant Fabiana imbricata, results in three allylic hydroperoxides 6, 9 and 10, which are expected from the “ene-type” reaction of molecular oxygen with the tri-substituted double bond in 1. The tertiary allylic hydroperoxide 6 undergoes carbon-carbon bond cleavage and a second autoxidation reaction to yield the more highly oxygenated seco-amorphane 11 under very mild conditions. In acid, this compound may then undergo either a second carbon-carbon bond cleavage reaction to yield nor-sesquiterpenes 2 and 3 (reported as bona fide natural products from F. imbricata, or cyclize to the sesquiterpene peroxofabianane (5), which is a presumed precursor to the natural product fabianane (4). Some mechanistic investigations concerning the two chemical processes: viz:- carbon-carbon bond cleavage and autoxidation which would account for the formation of natural products 2, 3 and 4 from 1 are reported. Tertiary allylic hydroperoxide 32, which lacks the 11-hydroxyl functional group present in 1 undergoes only C-4/C-5 carbon-carbon bond cleavage under more forcing conditions, suggesting a role for this functional group in assisting the autoxidation reactions of 4-amorphen-11-ol.  相似文献   

2.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

3.
A series of model theoretical calculations are described that suggest a new mechanism for the oxidation step in enzymatic cytochrome P450 hydroxylation of saturated hydrocarbons. A new class of metastable metal hydroperoxides is described that involves the rearrangement of the ground-state metal hydroperoxide to its inverted isomeric form with a hydroxyl radical hydrogen bonded to the metal oxide (MO-OH --> MO....HO). The activation energy for this somersault motion of the FeO-OH group is 20.3 kcal/mol for the P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] to produce the isomeric ferryl oxygen hydrogen bonded to an *OH radical [Por(SH)Fe(III)-O....HO(-)]. This isomeric metastable hydroperoxide, the proposed primary oxidant in the P450 hydroxylation reaction, is calculated to be 17.8 kcal/mol higher in energy than the ground-state iron(III) hydroperoxide Cpd 0. The first step of the proposed mechanism for isobutane oxidation is abstraction of a hydrogen atom from the C-H bond of isobutane by the hydrogen-bonded hydroxyl radical to produce a water molecule strongly hydrogen bonded to anionic Cpd II. The hydroxylation step involves a concerted but nonsynchronous transfer of a hydrogen atom from this newly formed, bound, water molecule to the ferryl oxygen with a concomitant rebound of the incipient *OH radical to the carbon radical of isobutane to produce the C-O bond of the final product, tert-butyl alcohol. The TS for the oxygen rebound step is 2 kcal/mol lower in energy than the hydrogen abstraction TS (DeltaE() = 19.5 kcal/mol). The overall proposed new mechanism is consistent with a lot of the ancillary experimental data for this enzymatic hydroxylation reaction.  相似文献   

4.
Terpolymers of ethylene, propylene and ethylidene norbornene (EN) rapidly react with singlet oxygen generated by dye sensitization. The singlet oxygen attacks the ethylidene double bond forming at least two different allylhydroperoxides. The instability of these hydroperoxides causes crosslinking of the photo-oxidized terpolymers at relatively low temperatures. Reduction of the hydroperoxide groups with triphenylphosphine yields a thermally stable hydroxylated polymer. Terpolymers of ethylene, propylene and dicyclopentadiene (DCPD) are inert towards singlet oxygen.  相似文献   

5.
Abstract— Reaction of singlet oxygen (1Δg, 1O2) with cis -polyisoprene yields an allylic hydroperoxide with an olefinic double bond shifted in the polymer chain. The photochemical decomposition of the resultant hydro-peroxide and the subsequent polymer chain scission kinetics have been studied in the absence of oxygen. Quantum yields of hydroperoxide decomposition range from 3.1 to 8.4 in cyclohexane, depending on the initial amount of hydroperoxide in the polymer. On the other hand, the quantum yields for polymer chain scission are low, and vary with the frequency of the incident light. The ratio for number of polymer scissions per number of hydroperoxy groups decomposed is of the order of 10-2. The polymer chain degradation is sensitized by the addition of ketones. Based on these data, a reaction mechanism for the overall photodegradation of the cis -polyisoprene initiated by singlet oxygen is proposed.  相似文献   

6.
The kinetics of the reaction between atactic polypropylene (APP) and oxygen in bulk at temperatures ranging from 170 to 210°C and oxygen partial pressures from 160 to 760 torr have been studied by thermal differential analysis. The reaction takes place in two successive steps, both giving hydroperoxide groups as product. Partial reaction orders with respect to APP and oxygen for the first step, which corresponds to the uncatalyzed attack of a C? H tertiary bond to give a hydroperoxide, are one and two, respectively. In the second step, interpreted as another attack on a tertiary C? H by oxygen, catalyzed by a neighboring hydroperoxide group, reaction orders are one and one-half for APP and oxygen, respectively. Activation parameters have been determined and a reaction sequence is proposed. Hydroperoxidated APP subsequently decomposes via a zero-order process giving methylketone groups as its main product. An interpretation of this process is also given.  相似文献   

7.
There are many potential reactions for trans-vinylene groups in oxidizing polyethylene melts. The main possibilities are reactions with peroxy radicals, molecular oxygen, hydroperoxides and peracids. These different reactions can all contribute to the removal of trans-vinylene groups to some extent. This is especially so, for the reactions with hydroperoxides that have been found to be the dominant reactions with vinylidene and vinyl groups in the low temperature range. The reaction with peroxy radicals is thought to be as important relatively as with vinylidene groups. Therefore, the importance of the reaction is decreasing with increasing temperature. However, the most characteristic reaction for trans-vinylene groups can be detected without any doubt only in the advanced stages of processing. It is mechanical stress induced oxygen addition to the double bond. The discussion shows that the reaction should be important from the beginning of processing. The reaction cannot operate with vinyl and vinylidene groups, which are not part of the polyethylene main chain. After oxygen addition to the trans-vinylene group, the “ene” reaction yields an allylic hydroperoxide so that the double bond is not immediately removed. It is acid catalyzed hydroperoxide decomposition that leads to chain scission with aldehyde formation at the new chain ends.  相似文献   

8.
The reaction profiles for the uni- and bimolecular decomposition of benzyl hydroperoxide have been studied in the context of initiation reactions for the (aut)oxidation of hydrocarbons. The unimolecular dissociation of benzyl hydroperoxide was found to proceed through the formation of a hydrogen-bonded radical-pair minimum located +181 kJ mol−1 above the hydroperoxide substrate and around 15 kJ mol−1 below the separated radical products. The reaction of toluene with benzyl hydroperoxide proceeds such that O−O bond homolysis is coupled with a C−H bond abstraction event in a single kinetic step. The enthalpic barrier of this molecule-induced radical formation (MIRF) process is significantly lower than that of the unimolecular O−O bond cleavage. The same type of reaction is also possible in the self-reaction between two benzyl hydroperoxide molecules forming benzyloxyl and hydroxyl radical pairs along with benzaldehyde and water as co-products. In the product complexes formed in these MIRF reactions, both radicals connect to a centrally placed water molecule through hydrogen-bonding interactions.  相似文献   

9.
L. Barrio 《Tetrahedron》2004,60(50):11527-11532
The enhancement in the autoxidation of ethylbenzene by molecular oxygen in the presence of quaternary ammonium salts (QAS) was investigated from the experimental and theoretical points of view. The primary effect of the addition of QAS to the reaction medium was an increase in ethylbenzene conversion. Quantum chemical calculations, using B3LYP hybrid functional, revealed a weakening of C-O and O-H bonds of the hydroperoxide. These effects favor the formation of ethylbenzenyl and peroxyl radicals, respectively, both of which are involved in the propagation reaction that leads to the formation of hydroperoxide, the desired final product.  相似文献   

10.
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.  相似文献   

11.
苯肼存在下丙烯酸酯的吸氧和氧化速度迅速增加,苯肼浓度约0.1—1.0%范围时,并发生聚合。 不同结构丙烯酸酯在苯肼存在下的吸氧与聚合的次序为:甲基丙烯酸 2-甲氧基乙酯>甲基丙烯酸羟基丙酯>甲基丙烯酸甲酯。我们认为苯肼存在下丙烯酸酯的氧化机构可能是苯肼结合丙烯酸酯醚键或双键α位碳原子上的氢,形成负碳离子或疏松离子对,从而在氧作用下生成过氧化合物。  相似文献   

12.
Yi Luo 《Tetrahedron letters》2008,49(48):6841-6845
The B3LYP theory and scaled hypersphere search method are utilized to explore pathways of (HO)2PS2Cu-mediated CH3OOH decomposition, a model reaction of alkyl hydroperoxide with cuprous dialkyldithiophosphate [(RO)2PS2Cu]. It is found that the decomposition of CH3OOH mediated by the copper(I) complex may lead to formaldehyde and water molecules via O-O bond heterolysis and subsequent intramolecular hydrogen transfer, with retainment of the copper(I) complex. The subsequent hydrogen transfer event and formation of water may add new understanding to the (RO)2PS2Cu-mediated decomposition process of alkyl hydroperoxide. The oxygen transfer from CH3OOH to (HO)2PS2Cu moiety, as an O-O bond cleavage manner of CH3OOH, is also found to occur.  相似文献   

13.
Molecular dynamics simulations are combined with quantum chemistry calculations of instantaneous proton-transfer energy profiles to investigate proton-transfer events in the transient pathway of cytochrome P450eryF (6-deoxyerythronolide B hydroxylase; CYP107A1), from the oxyferrous species to the catalytically active ferryl oxygen species (compound I). This reaction is one of the most fundamental unresolved aspects in the mechanism of oxidation that is common to all cytochrome P450s. We find that this process involves an ultrafast proton transfer from the crystallographic water molecule W519 to the distal oxygen bound to the heme group, and a subsequent proton-transfer event from W564 to W519. Both proton-transfer events are found to be endothermic in the oxyferrous state, suggesting that the oxyferrous reduction is mechanistically linked to the proton-transfer dynamics. These findings indicate that the hydrogen bond network, proximate to the O(2)-binding cleft, plays a crucial functional role in the enzymatic activation of P450s. Our results are consistent with the effect of mutations on the enzymatic efficacy.  相似文献   

14.
[reaction: see text] Here we report a novel modification of our previously reported "Staudinger ligation" that generates an amide bond from an azide and a specifically functionalized phosphine. This method for the selective formation of an amide bond, which does not require the orthogonal protection of distal functional groups, should find general utility in synthetic and biological chemistry.  相似文献   

15.
Electronic structure calculations have been carried out to provide a molecular interpretation for dihydrogen phosphate stability in water relative to that of metaphosphate. Specifically, hydration enthalpies of biologically important metaphosphate and dihydrogen phosphate with one to three waters have been computed with second-order M?ller-Plesset perturbation and density functional theory (B3LYP) with up to the aug-cc-pvtz basis set and compared to experiment. The inclusion of basis set superposition error corrections and supplemental diffuse functions are necessary to predict hydration enthalpies within experimental uncertainty. Natural bond orbital analysis is used to rationalize underlying hydrogen bond configurations and key orbital interactions responsible for the experimentally reported difference in hydration enthalpies between metaphosphate and dihydrogen phosphate. In general, dihydrogen phosphate forms stronger hydrogen bonds compared to metaphosphate due to a greater charge transfer or enhanced orbital overlap between the phosphoryl oxygen lone pairs, n(O), and the antibonding O-H bond of water. Intramolecular distal lone pair repulsion with the donor n(O) orbital of dihydrogen phosphate distorts symmetric conformations, which improves n(O) and sigma*(O-H) overlap and ultimately the hydrogen bond strength. Unlike metaphosphate, water complexed to dihydrogen phosphate can serve as both a hydrogen bond donor and a hydrogen bond acceptor, which results in cooperative charge transfer and a reduction of the energy gap between n(O) and sigma*(O-H), leading to stronger hydrogen bonds. This study offers insight into how orbital interactions mediate hydrogen bond strengths with potential implications on the understanding of the kinetics and mechanism in enzymatic phosphoryl transfer reactions.  相似文献   

16.
The oxidation of 2,2'-selenobis(benzamide) with N-chlorosuccinimide or hydrogen peroxide afforded the corresponding stable azaselenonium chloride and hydroxide, respectively. Both structures were characterized by spectroscopic and X-ray crystallographic methods. Each contains a covalent N-Se bond, as well as a noncovalent interaction between the selenium atom and the carbonyl oxygen atom of the other amide moiety. The treatment of the azaselenonium chloride with an excess of potassium hydride in DMSO-d(6) afforded the corresponding spirodiazaselenurane species, which proved hydrolytically unstable, but was characterized by NMR spectroscopy. The azaselenonium chloride displayed significant glutathione peroxidase-like catalytic activity in an assay with benzyl thiol and either hydrogen peroxide or tert-butyl hydroperoxide.  相似文献   

17.
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII-superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII−OOH species that couples with the substrate radical, leading to a CuI-alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O−O bond cleavage is coupled with the C−S bond breaking that generates the formylglycine and a CuII-oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2, which will be useful for future experimental work.  相似文献   

18.
Heme oxygenase (HO) catalyzes the oxygen-dependent degradation of heme to biliverdinIXalpha, CO, and free iron ion via three sequential monooxygenase reactions. Although the distinct active-site structure of HO from cytochrome P450 families suggests unique distal protein machinery to activate molecular oxygen, the mechanism and the key amino acid for the oxygen activation have not been clear. To investigate the functionality of highly conserved polar amino acids in the distal helix of HO-1, we have prepared alanine mutants: T135A, R136A, D140A, and S142A, and found drastic changes in the heme degradation reactions of D140A. In this paper, we report the first evidence that D140 is involved in the oxygen activation mechanism in HO-1. The heme complexes of HO mutants examined in this study fold and bind heme normally. The pK(a) values of the iron-bound water and autoxidation rates of the oxy-form are increased with R136A, D140A, and S142A mutations, but are not changed with T135A mutation. As the wild-type, T135A, R136A, and S142A degrade heme to verdohemeIXalpha with H(2)O(2) and to biliverdinIXalpha with the NADPH reductase system. On the other hand, D140A heme complex forms compound II with H(2)O(2), and no heme degradation occurs. For the NADPH reductase system, the oxy-form of D140A heme complex is accumulated in the reaction, and only 50% of heme is degraded. The stopped flow experiments suggest that D140A cannot activate iron-bound dioxygen and hydroperoxide properly. To investigate the carboxylate functionality of D140, we further replaced D140 with glutamic acid (D140E), phenylalanine (D140F), and asparagine (D140N). D140E degrades heme normally, but D140N shows reactivity similar to that of D140A. D140F loses heme degradation activity completely. All of these results indicate that the carboxylate at position 140 is essential to activate the iron-bound dioxygen and hydroperoxide. On the basis of the present findings, we propose an oxygen activation mechanism involving the hydrogen-bonding network through the bridging water and D140 side chain.  相似文献   

19.
Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen in the presence of sodium cyanide and acetic acid gives the corresponding alpha-aminonitriles, which are highly useful intermediates for organic synthesis. The reaction is the first demonstration of direct sp(3) C-H bond activation alpha to nitrogen followed by carbon-carbon bond formation under aerobic oxidation conditions. The catalytic oxidation seems to proceed by (i) alpha-C-H activation of tertiary amines by the ruthenium catalyst to give an iminium ion/ruthenium hydride intermediate, (ii) reaction with molecular oxygen to give an iminium ion/ruthenium hydroperoxide, (iii) reaction with HCN to give the alpha-aminonitrile product, H2O2, and Ru species, (iv) generation of oxoruthenium species from the reaction of Ru species with H2O2, and (v) reaction of oxoruthenium species with tertiary amines to give alpha-aminonitriles. On the basis of the last two pathways, a new type of ruthenium-catalyzed oxidative cyanation of tertiary amines with H2O2 to give alpha-aminonitriles was established. The alpha-aminonitriles thus obtained can be readily converted to alpha-amino acids, diamines, and various nitrogen-containing heterocyclic compounds.  相似文献   

20.
The properties of reduced rutile TiO2(110) surfaces, as well as the adsorption, diffusion, and dissociation of molecular oxygen are investigated by means of density functional theory. The O2 molecule is found to bind strongly to bridging oxygen vacancies, attaining a molecular state with an expanded O-O bond of 1.44 A. The molecular oxygen also binds (with somewhat shortened bond lengths) to the fivefold coordinated Ti atoms in the troughs between the bridging oxygen rows, but only when vacancies are present somewhere in the surface. In all cases, the magnetic moment of O2 is lost upon adsorption. The expanded bond lengths reveal together with inspection of electron density and electronic density of state plots that charging of the adsorbed molecular oxygen is of key importance in forming the adsorption bond. The processes of O2 diffusion from a vacancy to a trough and O2 dissociation at a vacancy are both hindered by relative large barriers. However, we find that the presence of neighboring vacancies can strongly affect the ability of O2 to dissociate. The implications of this in connection with diffusion of the bridging oxygen vacancies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号