首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
With the use of Kl?ui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.5 kOe.  相似文献   

2.
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation below T(c).  相似文献   

3.
Treatment of [NEt4][(pzTp)Fe(III)(CN)3] (1) with Ni(II)(OTf)2 (OTf = trifluoromethanesulfonate) and 1,5,8,12-tetraazadodecane (L) affords {[(pzTp)Fe(III)(CN)3]2[Ni(II)L]} x 1/2MeOH (2), while 2,2'-bipyridine (bipy) affords {[(pzTp)Fe(III)(CN)3]2[Ni(II)(bipy)2]} x 2 H2O (3). Magnetic measurements indicate that 2 and 3 have S = 2 ground states and that 3 exhibits slow relaxation of the magnetization above 2 K.  相似文献   

4.
The trinuclear and the tetranuclear complexes [[iPrtacnCr(CN)3]2[Ni(cyclam)]](NO3)2.5H2O 1 (cyclam = 1,4,8,11-tetraazacyclotetradecane, iPrtacn = 1,4,7-tris-isopropyl-1,4,7-triazacyclononane) and [[iPrtacnCr(CN)3Ni(Me2bpy)2]2](ClO4)4.2CH3CN 2 (Me2bpy = 4,4-dimethyl-2,2-bipyridine) were synthesized by reacting (iPrtacn)Cr(CN)3 with [Ni(cyclam)](NO3)2 and [Ni(Me2bpy)2(H2O)2](ClO4)2, respectively. The crystallographic structure of the two compounds was solved. The molecular structure of complex 1 consists of a linear Cr-Ni-Cr arrangement with a central Ni(cyclam) unit surrounded by two Cr(iPrtacn)(CN)3 molecules through bridging cyanides. Each peripheral chromium complex has two pending CN ligands. Complex 2 has a square planar arrangement with the metal ions occupying the vertices of the square. Each Cr(iPrtacn)(CN)3 molecule has two bridging and one non-bridging cyanide ligands. The magnetic properties of the two complexes were investigated by susceptibility vs. temperature and magnetization vs. field studies. As expected from the orthogonality of the magnetic orbitals between Cr(III) (t2g3) and Ni(II) (e(g)2) metal ions, a ferromagnetic exchange interaction occurs leading to a spin ground states S = 4 and 5 for 1 and 2, respectively. The magnetization vs. field studies at T = 2, 3 and 4 K showed the presence of a magnetic anisotropy within the ground spin states leading to zero-field splitting parameters obtained by fitting the data D4 = 0.36 cm(-1) and D5 = 0.19 cm(-1) (the indices 4 and 5 refer to the ground states of complexes 1 and 2, respectively). In order to quantify precisely the magnitude of the axial (D) and the rhombic (E) anisotropy parameters, High-field high frequency electron paramagnetic resonance (HF-HFEPR) experiments were carried out. The best simulation of the experimental spectra (at 190 and 285 GHz) gave the following parameters for 1: D4 = 0.312 cm(-1), E4/D4 = 0.01, g4x = 2.003, g4y = 2.017 and g4z = 2.015. For complex 2 two sets of parameters could be extracted from the EPR spectra because a doubling of the resonances were observed and assigned to the presence of complexes with slightly different structures at low temperature: D5 = 0.154 (0.13) cm(-1), E5/D5 = 0.31 (0.31) cm(-1), g4x = 2.04 (2.05), g4y = 2.05 (2.05) and g4z = 2.03 (2.02). The knowledge of the magnetic anisotropy parameters of the mononuclear Cr(iPrtacn)(CN)3, Ni(cyclam)(NCS)2 and Ni(bpy)2(NCS)2 complexes by combining HF-HFEPR studies and calculation using a software based on the angular overlap model (AOM) allowed to determine the orientation of the local D tensors of the metal ions forming the polynuclear complexes. We, subsequently, show that the anisotropy parameters of the polynuclear complexes computed from the projection of the local tensors are in excellent agreement with the experimental ones extracted from the EPR experiments.  相似文献   

5.
Wen HR  Wang CF  Song Y  Gao S  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8942-8949
With the use of the tailored cyanometalate precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl)hydroborate) as the building block to react with fully solvated Cu(II), Co(II), and Ni(II) cations, four one-dimensional (1D) heterobimetallic cyano-bridged chain complexes of squares, [(Tp)2Fe(III)2(CN)6Cu(CH3OH).2CH3OH]n (1), [(Tp)2Fe(III)2(CN)6Cu(DMF).DMF]n (2), [(Tp)2Fe(III)2(CN)6M(CH3OH)2.2CH3OH]n (M = Co (3) and Ni (4)), have been prepared. In complexes 1 and 2, the Cu(II) ions are pentacoordinated in the form of a slightly distorted square-based pyramid, and they are linked by distorted octahedrons of [(Tp)Fe(CN)3]- to form 1D chains of squares. In complexes 3 and 4, both the central Co(II) and Ni(II) ions have a slightly distorted octahedral coordination geometry, and they are bridged by [(Tp)Fe(CN)3]- to form similar 1D chains of squares. There are weak interchain pi-pi stacking interactions through the pyrazolyl groups of the Tp ligands for complexes 3 and 4. The crystal structures and magnetic studies demonstrate that complexes 1 and 2 exhibit intrachain ferromagnetic coupling and single-chain magnets behavior, and the blocking temperature is ca. 6 K for complex 1 and ca. 3 K for complex 2. Complexes 3 and 4 show significant metamagnetic behavior, where the cyanides mediate the intrachain ferromagnetic coupling between Fe(III) and Co(II) or Ni(II) ions and the interchain pi-pi stacking interactions lead to antiferromagnetic couplings. The field dependence of the magnetization measurements shows that the critical field is around 1 kOe for complex 3 and 0.8 kOe for complex 4 at 1.8 K.  相似文献   

6.
The low-spin iron(III) complex AsPh(4)[Fe(III)(bpy)(CN)(4)].CH(3)CN (1) [AsPh(4) = tetraphenylarsonium cation] and the heterobimetallic chains [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)].4H(2)O with L = bpy (2) and phen (3) [bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline] have been prepared and their structures determined by X-ray diffraction methods. The structure of 1 consists of mononuclear [Fe(bpy)(CN)(4)](-) anions, tetraphenylarsonium cations and acetonitrile molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of the bidentate bpy and four carbon atoms of four terminal cyanide groups building a distorted octahedral surrounding around the metal atom. 2 and 3 are isomorphous compounds whose structure is made up of neutral 4,2-ribbon like bimetallic chains of formula [{Fe(III)(L)(CN)(4)}(2)Ni(II)(H(2)O)(2)] where the [Fe(III)(L)(CN)(4)](-) unit acts as a bis-monodentate bridging ligand toward the trans-diaquanickel(II) units through two of its four cyanide groups in cis positions. The chains exhibit two orientations in the unit cell and they interact with each other through hydrogen bonds involving the coordination and crystallization water molecules together with the uncoordinated cyanide nitrogen atoms of the [Fe(L)(CN)(4)](-) units. Compounds 2 and 3 behave as ferromagnetic Fe(III)(2)Ni(II) chains which interact ferromagnetically at very low temperatures in the case of 2, whereas metamagnetic-like behaviour is observed for with a critical field (H(c)) around 200 G. For H > H(c) the ferromagnetic Fe(III)(2)Ni(II) chains of 3 exhibit a frequency dependence of the out-of-phase ac susceptibility signal at T < 3.5 K.  相似文献   

7.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

8.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

9.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

10.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   

11.
The copper template effect allows the preparation of tridentate ligands that chelate copper ions, leaving unoccupied the fourth basal coordination position and at least one axial position of the copper coordination polyhedron. Two such cationic complexes, [LCu](+) and [L(1)Cu](+) (L(-) = 2-{(E)-[(2-aminoethyl)imino]methyl}phenoxo] and L(1-) = 2-{(E)-[(2-aminopropyl)imino]methyl}phenoxo), react with diamagnetic polycyanometalate tectons such as Ni(CN)(4)(2-) or Ag(CN)(2)(-) to yield different neutral 1D complexes. In {[(LCu)(2)Ni(CN)(4)]}(n) (1) the four cyano nitrogen atoms are involved in coordination with copper ions in such a manner that each copper atom is pentacoordinated and linked to two cyano functions that occupy axial and equatorial coordination positions. Two L(1)Cu(+) cationic entities are linked, through their equatorial plane, to two trans cyano groups of the Ni(CN)(4)(2-) tecton in complex [(L(1)Cu)(2)Ni(CN)(4)] (2), the two uncoordinated cyano groups being involved in hydrogen bonds. 2 is a racemate, a S stereoisomer being associated with a R one in each [(L(1)Cu)(2)Ni(CN)(4)] unit. Zigzag Cu-Ag chains are present in [(LCu)Ag(CN)(2)] (3), where the copper centers are pentacoordinated and connected to the cyano groups in an alternate axial-equatorial coordination scheme. A bidimensional structure is developed by interchain argentophilic interactions. In complex 4, {(L(1)CuMeOH)(L(1)Cu)[Ag(CN)(2)](2)}, two L(1)Cu units are connected by a NC-Ag-CN bridge in an equatorial position. These resulting units exhibit argentophilic interactions with [Ag(CN(2))](-) entities that are monocoordinated in the equatorial position to the next unit, ultimately leading to a chain. Weak Cu-Cu magnetic interactions are detected in the four compounds, antiferromagnetic in the case of equatorial-equatorial copper interactions, ferromagnetic for orthogonal interacting copper orbitals (axial-equatorial interactions), while axial-axial bridges are characterized by an absence of interaction. The presence of weak ferromagnetic interactions through large NC-Ni-CN or NC-Ag-CN bridges (Cu···Cu distances larger than 10 ?) furnishes experimental evidence for the existence of next-nearest-neighbor interactions through diamagnetic centers. DFT calculations do confirm the existence of these magnetic transmission pathways through the diamagnetic metal bridge.  相似文献   

12.
The reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}.xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}.5H2O, NH4{[NiL][Cr(CN)6]}.3.5H2O, K{[NiL][Cr(CN)6]}.4H2O, K{[NiL][Fe(CN)6]}.4H2O, Rb{[NiL][Fe(CN)6]}.3.5H2O, and Cs{[NiL][Fe(CN)6]}.3.5H2O, as well as the powder diffractometry of the entire Fe(III) series, are reported. The magnetic properties of the assemblies are dependent on the monocation A and discussed in detail. New efficient pathways for ferromagnetic exchange between Ni(II) and Fe(III) or Cr(III) are demonstrated. Field dependencies of the magnetization for the Fe(III) samples at low temperature and low magnetic field indicate a weak interchain antiferromagnetic coupling, which is switched to ferromagnetic coupling at increasing magnetic field (metamagnetic behavior). The interchain magnetic coupling can be tuned by the size of the A cations.  相似文献   

13.
The combination of Ni2+, dipropylenetriamine (dipn), and [Cr(CN)6]3- affords the cyanide-bridged bimetallic assembly, [Ni(dipn)]3[Cr(CN)6]2.3H2O (1). This compound crystallizes in cubic space group Pa, with a = b = c = 20.9742(7) A and Z = 8. A three-dimensional network is constructed on the basis of a Cr8Ni12 cubane unit formed by an alternate array of [Cr(CN)6]3- and [Ni(dipn)]2+ units through Cr-CN-Ni-NC-Cr edges. Cryomagnetic studies reveal a ferromagnetic interaction between Cr(III) and Ni(II) ions and a long-range ferromagnetic ordering below 42 K with very small coercive field. To the best of our knowledge, this compound is the first "complete ferromagnet" providing three-dimensional ferromagnetic interaction through a three-dimensional bridging structure that is based on a cubic unit among general metal-oxide and molecule-based magnets. Magnetooptical studies demonstrate a strong correlation between magnetic and optical properties.  相似文献   

14.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

15.
Effects of pressure on the structures and magnetic properties of three types of 3-D cyanide-bridged bimetallic coordination polymer magnets, MnIICrIII ferrimagnet [Mn(en)]3[Cr(CN)6]2.4H2O (1; en = ethylenediamine), NiIICrIII ferromagnet [Ni(dipn)]3[Cr(CN)6]2.3H2O (2; dipn = N,N-di(3-aminopropyl)amine), and NiIIFeIII ferromagnet [Ni(dipn)]2[Ni(dipn)(H2O)][Fe(CN)6]2.11H2O (3), were systematically examined under hydrostatic pressure up to 19.8 GPa using a piston-cylinder-type pressure cell and a diamond anvil cell. The ferrimagnet 1 showed the reversible crystalline-to-amorphous-like phase change, and the magnetic phase transition temperature (TC) was reversibly changed from 69 K at 0 GPa to 126 K at 4.7 GPa. At higher pressure, the net magnetization was suppressed with increasing pressure, and the magnetic state at 19.8 GPa was assumed to be paramagnetic. The initial ferrimagnetic phase of 1 was not recovered after releasing the pressure from 19.8 GPa. The magnetic phase of 2 was reversibly converted between ferromagnetic and paramagnetic-like phase in the range 0 相似文献   

16.
采用[(Tp)Fe(CN)3]-(Tp=hydrotris(pyrazolyl)borate)与[NiL](ClO4)2(L=3,10-bis(2-bydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetra-decane)反应,合成了氰根桥联的异金属三核配合物[NiL][(Tp)Fe(CN)3]2·4H2O(1),并对其结构和磁性进行了研究.该化合物晶体属于正交晶系,Pbca空间群.配合物1中,Ni(Ⅱ)大环与2 [(Tp)re(CN)3]-通过氰根桥联,形成近似直线的三核结构.Ni原子的配位采取六配位稍畸变的八面体构型.其中大环配体上的4个N原子占据赤道平面而桥联氰根的2个N原子占据轴向位置.磁性测定表明在2-300 K的温度范围内,Ni(Ⅱ)和Fe(Ⅲ)之间通过桥联的氰根产生弱的铁磁相互作用.用哈密顿函数H=-2J(SFel·SNi SFe2·SNi)对其XMT-T曲线进行了拟合,得到1的朗德因子g=2.35和交换常数J=8.13 cm-1.最后,对配合物的结构与磁性的关系进行了讨论.  相似文献   

17.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

18.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

19.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

20.
Chen XY  Shi W  Xia J  Cheng P  Zhao B  Song HB  Wang HG  Yan SP  Liao DZ  Jiang ZH 《Inorganic chemistry》2005,44(12):4263-4269
The syntheses, crystal structures, and magnetic properties of three novel cyano-bridged bimetallic assemblies, [Ni(bpm)(2)](3)[Co(CN)(6)](2)x3.5H(2)O (1), [Co(bpm)(2)][Fe(CN)(5)NO]x2H(2)O (2), and [Co(bpm)(2)][Ni(CN)(4)] (3) (bpm = bis(1-pyrazolyl)methane), are reported. Complex 1 crystallizes in the tetragonal space group P4(3)2(1)2 with a = 12.800(5) A, b = 12.800(5) A, c = 42.80(3) A, V = 7012(6) A(3), and Z = 8. Complex 2 crystallizes in the chiral trigonal space group P3(2)21 with a = 11.9961(19) A, b = 11.9961(19) A, c = 16.062(5) A, gamma = 120 degrees , V = 2001.7(8) A(3), and Z = 3. Complex 1 is a trigonal bipyramidal complex in which three [Ni(bpm)(2)](2+) units are situated in the equatorial plane and are connected to the two apical [Co(CN)(6)](3)(-) units via three N ends of the cyanide groups. Complex 2 possesses a triangular left-handed helical chain structure composed of [Co(bpm)(2)](2+) linked by [Fe(CN)(5)NO](2)(-); the shortest intramolecular Co...Fe distance is 5.162 A. To the best of our knowledge, this is the first observation of a heteronuclear helical chain structure based on pentacyanonitrosylferrate(II). The structure of complex 3 is roughly determined by X-ray crystallograhy analysis to be a 1D zigzag chain. These structure variations, from a discrete cluster to a 1D helical chain and a 1D zigzag chain, rely on the semirigidity of the capping ligand bpm. Magnetic susceptibility measurements indicate that complex 1 has an intramolecular ferromagnetic interaction (J = 4.06 cm(-)(1)) between the nickel(II) ions; this is further confirmed by the magnetization measurements. In complexes 2 and 3, the cobalt(II) ions are located in a moderately strong field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号