首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new electron donating small molecules(SMs),Pyr(EH-DPP)_2,Pyr(HD-DPP)_2 and PyrA(EH-DPP)_2,are designed and synthesized through coupling electron rich pyrene core with electron deficient diketopyrrolopyrrole(DPP) terminals,of which the derived organic solar cells(OSCs) exhibit interesting structure-performance correlation.It shows that the tune of their solubilizing side chains and π-bridge for the acceptor-donor-acceptor(A-D-A) SMs can significantly alter the resultant short-circuit current density and power conversion efficiency(PCE) in OSCs.The Pyr(EH-DPP)_2 with short side chains displays broader absorption and higher hole mobility than the Pyr(HD-DPP)_2 with long side chains.Although showing planar structure,the acetylene bridge-incorporated PyrA(EH-DPP)_2 adapts an undesired edge-on packing and strong aggregation in film,leading to non-ideal morphology and poor miscibility with fullerene acceptors.As a result,the PCE of the solar cell based on Pyr(EH-DPP)_2 is several times higher than those based on Pyr(HD-DPP)_2 and PyrA(EH-DPP)_2,indicating the A-D-A combination of polyaromatics with DPP would be the promising skeleton for developing photovoltaic semiconductors.  相似文献   

2.
Lin LY  Lu CW  Huang WC  Chen YH  Lin HW  Wong KT 《Organic letters》2011,13(18):4962-4965
Two A-A-D-A-A-type molecules (BCNDTS and BDCDTS), where two terminal electron-withdrawing cyano or dicyanovinylene moieties are connected to a central dithienosilole core through another electron-accepting 2,1,3-benzothiadiazole block, have been synthesized, characterized, and employed as electron donors for small molecule organic solar cells. Vacuum-deposited bilayer and planar mixed heterojunction devices based on BCNDTS and fullerene acceptors (C(60) or C(70)) exhibited decent power conversion efficiencies of 2.3% and 3.7%, respectively.  相似文献   

3.
A new star-shaped small molecule named TCNR3TTPA,with a triphenylamine(TPA)unit as the central building block and2-(1,1-dicyanomethylene)-3-octyl rhodanine(CNR)as the end-capped group,has been designed and synthesized.TCNR3TTPA showed a deep highest occupied molecular orbital(HOMO)energy level( 5.60 e V)and broad absorption.The solution-processed bulk heterojunction(BHJ)solar cells based on TCNR3TTPA:PC61BM(1:1,w/w)exhibited a high open-circuit voltage(Voc)of 0.99 V,a short-circuit current density(Jsc)of 5.76 m A/cm2,and a power conversion efficiency(PCE)of 2.50%under the illumination of AM 1.5 G,100 m W/cm2.The high Voc is ascribed to the strong electron-with-drawing ability of the end-capped 2-(1,1-dicyanomethylene)-3-octyl rhodanine group.These results demonstrated that the Voc of small-molecule organic solar cells could be increased by introducing a strong electron-withdrawing end-capped block,and that this is an effective strategy to design high-performance small molecules for organic solar cells.  相似文献   

4.
Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.  相似文献   

5.
To seek for high‐performance small molecule donor materials used in heterojunction solar cell, six acceptor–donor–acceptor small molecules based on naphtho[2,3‐b:6,7‐b′]dithiophene ( NDT ) units with different acceptor units were designed and characterized using density functional theory and time‐dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 ( TDPP = thiophene‐capped diketopyrrolopyrrole). The open circuit voltage (Voc), energetic driving force(ΔEL‐L), and exciton binding energy (Eb) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3–7 match well with the acceptor material PC61BM , and compounds 3–5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1 , system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher Voc, lower Eb, and similar carrier mobility. An in‐depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
This review summarizes the high performance small molecule donors of organic solar cells in various classes of typical donor-acceptor (D-A) structures and discusses their relationships briefly.  相似文献   

7.
Indacenodithiophene (IDT) derivatives are kinds of the most representative and widely used cores of small molecule acceptors (SMAs) in organic solar cells (OSCs). Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF (n = 0, 2, 4). The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement, and their electronic energy levels downshift with increasing n. Due to the advantages of Jsc and FF as well as acceptable Voc, the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency (PCE) of 13%, better than the OSC devices based on IDIC and IDIC-4F as acceptors. And the photovoltaic performance of the PTQ10: IDIC-2F OSCs is insensitive to the active layer thickness: PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm, respectively. This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs. Meanwhile, the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.  相似文献   

8.
A simple small molecule named DICTiF was designed,synthesized and used as the acceptor for solution processed bulk-heterojunction solar cells with polymer PBDB-T as the donor.A power conversion efficiency of 7.11%was obtained.  相似文献   

9.
Organic solar cells based on a series of water-soluble zinc phthalocyanines (wsZnPc) with varying numbers of sulfonate peripheral substituents and a C60 donor have been fabricated and characterised. We find that the number of substituents affects both the V(oc) and J(sc) of the devices, with the disulfonated wsZnPc devices performing best.  相似文献   

10.
Small molecule donor/polymer acceptor(SD/PA)-type organic solar cells(OSCs) have attracted widespread attention in recent years due to the continuing power conversion efficiency(PCE) growth, near 10%, and the excellent thermal stability for the practical applications. However, the development of SD/PA-type OSCs lags far behind that of polymer donor/small molecule acceptor(PD/SA)-type OSCs, which are also based on the combination of small molecule and polymer, with the PCEs exceeding 18%. The rea...  相似文献   

11.
Donor-acceptor molecules with small chain extension have been synthesized and used as active material in organic solar cells. The effect of fusion of a phenyl group on the end dicyanovinylene acceptor is discussed.  相似文献   

12.
Science China Chemistry - The design and development of low-cost and efficient photovoltaic materials remain a major challenge for the research and application of polymer solar cells (PSCs)....  相似文献   

13.
Sun  Rui  Wu  Yao  Guo  Jing  Luo  Zhenghui  Yang  Chuluo  Min  Jie 《中国科学:化学(英文版)》2020,63(9):1246-1255
Two p-type small molecules BDTT-TR and TBFT-TR with benzo[1,2-b′:4,5-b′]dithiophene(BDT) and thieno[2,3-f]benzofuran(TBF) as central core units are synthesized and used as donors in all-small-molecule organic solar cells(all-SMOSCs) with a narrow-bandgap small molecule Y6(2,2′-((2 Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'′:4',5′]thieno[2′,3′: 4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile) as the acceptor. In comparison to BDTT-TR with centrosymmetric BDT as the central unit, TBFT-TR with asymmetric TBF as the central unit shows red-shifted absorption, higher charge-carrier mobility and better charge pathway in blend films. The power conversion efficiency(PCE) of the all-SMOSCs based on TBFT-TR:Y6 reaches 14.03% with a higher short-circuit current density of 24.59 m A cm-2 and a higher fill factor of72.78% compared to the BDTT-TR:Y6 system. The PCE of 14.03% is among the top efficiencies of all-SMOSCs reported in the literature to date.  相似文献   

14.
Novel A-D-A type oligothiophenes incorporating benzothiadiazole (BTDA) and thiadiazolopyridine (TDAPy) as terminal acceptor groups have been developed for small molecule organic solar cells (SMSC). In vacuum-processed planar heterojunction solar cells the TDAPy-based oligomer showed a power conversion efficiency of 3.15% and a high fill factor of 0.67.  相似文献   

15.
A star-shaped oligothiophene based on triphenylamine as a core and 2-ethylhexyl cyanoacetate as end groups (S(TPA-3T-CA)) was synthesized. S(TPA-3T-CA) exhibited strong absorption and high hole mobility. Solution-processed solar cells based on S(TPA-3T-CA):PC(71)BM showed a power conversion efficiency of 3.60% and a fill factor of 0.56.  相似文献   

16.
Four metallated conjugated oligothiophenes,S-1,S-2,S-3 and S-4,with platinum(II)aryleneethynylenes as the electron-rich building block were synthesized to investigate their physicochemical and photovoltaic properties.These small molecules possess fairly low-lying HOMO energy levels which match with the LUMO energy level of the electron acceptor PC70BM([6,6]-phenyl-C71-butyric acid methyl ester).Using the simple process of spin-coating solution fabrication technique,S-1:PC70BM(1:4,w/w)based organic solar cells exhibiting a high Voc of 0.913 V,with a PCE value of 0.88%were developed.In contrast,the OSC device based on S-2:PC70BM(3:7,w/w)displayed a higher PCE of 1.59%with a higher Jsc value of 5.89m A cm–2.The device based on S-4:PC70BM(1:4,w/w)exhibited a PCE value of 1.56%,with a Voc of 0.917 V.  相似文献   

17.
正Non-fullerene acceptors (NFAs) become an interesting family of organic photovoltaic materials, and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low cost coating methods [1–5]. Recently, our group proposed in the first time an A-DA’D-A molecular strategy and synthesized a new class of non-fullerene acceptor Y6 with a record efficiency above 15%with single junction organic solar cells (OSCs)[6]. To further improve the photovoltaic performance  相似文献   

18.
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.  相似文献   

19.
An extended study on a group of four soluble diphenyl-amino-stilbene based diphenyl-diketopyrrolo- pyrrole molecules has been carried out. Using the materials in thin-film transistors it was shown that the above-mentioned compounds can be successfully used as donors in organic photovoltaic devices. Influence of the molecular symmetry and solubilizing chain on the morphology and solar cell performance are described. It was shown that a shorter and non-branched ethyl acetate chain leads to higher charge carrier mobility, short circuit current, and better fill factor. After the basic optimization, a power conversion efficiency of about 1.5 % was reached. This, to the best of our knowledge, is the highest reported efficiency of thiophene-free small-molecule diketo-pyrrolopyrroles.  相似文献   

20.
A multidomain compound with applications in the area of organic solar cells has been prepared. This all-in-one molecule compound integrates all the functionalities needed for solar cell action from light harvesting, carrier generation, and separation, to transport and contact to external electrodes. A convergent synthetic strategy with some 60 steps involving preparation of regioregular oligothiophenes, a zinc porphyrin, a bisterpyridine ruthenium(II) complex, a hetero oligo phenylenevinylene and functional end groups is described. Preliminary investigations of photovoltaic devices based on the target molecule gave values of 0.18 V, 0.0044 mA cm(-2), 29% and 0.000081% for the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF), and efficiency (eta). These poor values are compared to those obtained with an oligo-3-hexylthiophene which gave values of 0.7 V, 0.046 mA cm(-2), 24.6%, and 0.0081% for the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and efficiency (eta). This latter compound was also studied in a bulk heterojunction device with PCBM (1:1 blend) which gave values of 0.43 V, 0.45 mA cm(-2), 33.5%, and 0.063%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号