首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于变Prt模型对超临界甲烷的流动换热特征进行研究,建立不同几何结构参数的管道模型,对比研究管道浮升力、离心力、重力、流动加速对流动换热影响。结果表明,修正Prt后的湍流模型将模拟误差由12%以上降至6%以下;换热系数随缠绕直径的减小而增大,减小缠绕管的缠绕直径可以减弱流动加速对传热的恶化作用;换热系数随管道直径的减小而增大,减小管道直径可以增强浮升力对传热的强化作用;重力、浮升力和离心力耦合作用使得绕管内湍动能分布发生向内下侧的偏移。  相似文献   

2.
《工程热物理学报》2021,42(8):2097-2105
为了了解重力水平对超燃冲压发动机再生冷却中航空燃油流动及传热特性的影响,本文采用有限容积法对不同重力水平下水平圆管内RP-3航空煤油的流动和传热进行三维数值模拟。水平圆管内径为1.8 mm,壁厚为0.2 mm,长为300 mm,管内工质为RP-3航空煤油,管壁受到q=400 kW/m~2的均匀热流密度加热。研究结果表明,根据重力水平的不同可将二次流流型沿管长的变化归纳为3种流型演变规律。0g时截面流型由入口段的汇流发展为源流,最终再次变为汇流;当重力水平增加至0.1g时,在管道轴线上方出现涡状流动,涡胞中心沿管长方向逐渐向下移动,最终流型转变为汇流;当重力水平增加至0.3g时,涡状流动涡胞中心位于管道轴线下方,沿着管长方向快速上移至轴线上方,最终发展至管道轴线下方。随着重力水平的增大,水平圆管轴线上方流体的湍动能逐渐增大,而轴线下方流体的湍动能却逐渐减小。流体湍动能受浮升力效应诱导二次流影响呈非对称分布。重力水平的增大能强化下管壁附近的对流换热,而抑制上管壁附近的对流换热,在上壁面出现了传热恶化现象。管壁平均对流换热系数会随重力水平的增大而增大。  相似文献   

3.
超临界压力下RP-3在细圆管内对流换热实验研究   总被引:4,自引:0,他引:4  
对超临界压力下RP-3在竖直细圆管内对流换热进行了实验研究。分析了变物性,浮升力、热加速等对流动换热的影响,并对已有关联式进行了修正。结果表明:在入口雷诺数4500的实验中,流动换热主要受变物性的影响,浮升力和热加速对流动换热的影响可忽略;在入口雷诺数为2500的实验中,在向上流动和高热流密度时,浮升力引起传热恶化,换热系数明显降低。  相似文献   

4.
采用SSTk-ω模型对冷却条件下超临界压力CO_2在水平管内的对流换热进行了数值研究,分析了流体物性、热流密度、直径以及浮升力等对其在拟临界点附近的流动换热特性的影响,并从场协同的角度分析了超临界压力CO_2的传热机理。结果表明:浮力效应使流体在流动截面上出现温度场不对称和二次流现象;下壁面的对流换热系数比上壁面先达到峰值,但换热系数小于上壁面;增大热流密度对换热系数的影响较小但能够使换热系数的峰值向入口段移动;增大热流密度和增大直径能够增强浮力效应对流体换热特性的影响;场协同原理可以解释同一截面处的换热不均匀现象。  相似文献   

5.
为揭示超临界LNG螺旋管汽化器的传热机理,应用雷诺应力模型,在等壁温条件下,对超临界压力低温甲烷在螺旋管内流动与传热特性进行了数值研究。研究结果表明,当主流体温度小于准临界温度,浮升力是造成管截面内流体温度分布不均的主要原因。反之,由于离心力的作用,较低温流体出现在管截面外侧区域。当主流体温度小于和接近准临界温度时,浮升力可明显提高换热系数,在准临界点处换热系数出现峰值,且压力对其有一定影响。  相似文献   

6.
针对超临界CO2空冷换热器中存在的非均匀传热问题,本文利用数值模拟计算了水平空冷翅片管中管壁热流分布规律及超临界CO2在非均匀冷却时的换热特性,同时分析了非均匀冷却工况下不均匀度、质量流量和浮升力等因素对换热规律的影响。结果表明:翅片管热流密度沿周向管壁位置呈现显著的不均匀分布,且不均匀度随风速增大而增大;超临界CO2非均匀冷却的平均换热系数在远离准临界点时高于均匀冷却,靠近准临界点时低于均匀冷却;非均匀冷却与均匀冷却的差异随不均匀度、质量流量增大而增大。CO2在准临界点处的非线性物性变化与浮升力作用是造成两者差异的主要原因。  相似文献   

7.
研究非共沸混合工质R32/R134a(质量比,25%/75%)在水平微尺度通道内流动沸腾换热规律。在各种工况下进行了非共沸混合工质R32/R134a在水平微尺度管道内流动沸腾换热的实验,考察了质量流量G、热流密度q、质量干度x对微尺度通道内流动沸腾换热系数的影响。研究表明:在热流密度、质量流量都较低的区域,对细管道,换热系数与热流密度的关联度较大;而对微管道,换热系数受影响的因素比较多,并在干度为0.6时出现"干涸"现象,使得换热系数急剧下降。在质量流量高的区域,对细管道,热流密度对换热系数的影响很小;而对微尺度管道,当干度为0.06时换热系数发生转变,随质量干度的增加先减小后增大,热流密度增大到一定的阶段后,换热系数不再随热流密度变化。  相似文献   

8.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

9.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

10.
超临界压力正癸烷旋转通道内对流换热实验研究   总被引:1,自引:0,他引:1  
本文对超临界压力正癸烷在旋转圆管内的对流换热开展了实验研究,获得了转速和热流密度对换热的影响规律。结果表明离心段和向心段对流换热均随着转速的升高而增强,离心段后缘面换热优于前缘面,而向心段则相反。低转速时,重力浮升力与离心浮升力大小相近,使换热发生恶化,随转速增加,重力浮升力可以忽略,换热增强。  相似文献   

11.
王平  尹玉真  沈胜强 《物理学报》2014,63(21):214401-214401
利用CFD软件数值研究了颗粒三维有序堆积多孔介质的对流换热问题. 采用颗粒直径分别为14 mm,9.4 mm和7 mm的球形颗粒有序排列构成多孔介质骨架,在多孔骨架的上方有一恒热流密度的铜板. 采用流固耦合的方法研究了槽通道内温度分布和局部对流换热系数的分布以及对流换热的影响因素. 研究结果表明:热渗透的厚度和温度边界层的厚度在流动方向上逐渐增大,并且随流量的增加而减小;当骨架的导热系数比较高时,对流换热随颗粒直径的减小而略有增大;对流换热系数随聚丙烯酰胺溶液浓度的增大而减小,黏性耗散减弱了对流换热. 关键词: 多孔介质 温度场 局部对流换热系数 数值模拟  相似文献   

12.
超临界CO_2管内流动与冷却换热过程中,物性发生剧烈变化,流动换热特性独特,研究管径影响超临界CO_2流动换热性能的内在机理和规律具有一定的实用价值。本文采用能够精确计算超临界CO_2物性的NIST实际气体模型,通过对比不同湍流模型,得到计算超临界CO_2流动换热性能效果最优的计算模型,并利用该计算模型对超临界CO_2管内流动换热过程进行模拟计算。结果发现温度场变化使得超临界CO_2物性发生剧烈变化,引起二次流强度变化,影响了流场分布和换热性能。随着管径的增大,二次流涡中心向管壁移动,且涡扭曲程度增强;格拉晓夫数Gr随管径的增大而迅速增大,表明浮升力对换热的影响增大,因此有效换热系数迅速增大。  相似文献   

13.
基于已知的2087组水的过冷流动沸腾传热实验数据,通过努塞尔数(Nu)和格拉晓夫数(Gr)的关系探讨了不同流动方向和加热方式下浮升力对过冷流动沸腾传热性能的影响。对上壁面单边加热水平矩形管内过冷流动沸腾传热进行了实验研究。实验结果表明,向上的浮升力阻碍了气泡向流体中的扩散,使得传热恶化。在增加流速、增大压力和减小过冷度的条件下,Nu均随Gr增加,使过冷流动沸腾传热得到强化。  相似文献   

14.
超临界压力下正癸烷在微细圆管内对流换热实验研究   总被引:2,自引:0,他引:2  
本文对超临界压力下正癸烷在内径为0.95 mm和2 mm竖直微细圆管内对流换热进行了实验研究.入口压力p_(in)=3 MPa和入口雷诺数Re_(in)=4000时,分析了管径、变物性、浮升力和加速对对流换热的影响.结果表明:在所研究的工况范围内,对于0.95 mm内径圆管,浮升力和加速对换热的影响可忽略,对流换热主要受变物性的影响;而对于2mm内径圆管,在高热流密度时,浮升力对正癸烷的对流换热影响很大,向上流动时引起换热恶化,向下流动时引起换热强化,加速对流动换热的影响可忽略.  相似文献   

15.
对不同质量分数下非共沸混合工质(R134a/R32)在微尺度管道内的流动沸腾换热特性进行了比较和分析,阐述了热流密度、质量流量和质量干度对换热的影响。结果表明:热流密度对换热的影响随着质量流量的增加而愈加明显;在质量分数为75%/25%和65%/35%时,换热系数随着质量流量的增大而增大;而质量分数为85%/15%时,换热系数随质量流量的变化先增加后减小;随着质量干度的增加,换热系数在各质量分数下基本上都呈上升趋势。  相似文献   

16.
基于单相流体的概念,超临界流体的异常传热行为已经被研究很多年了,但是关于其流动传热机理仍没有统一的认识.本文通过理论分析和实验研究了超临界二氧化碳在竖直管内向上流动过程中,浮升力和流动加速效应对其流动结构和传热过程的影响.结果表明,没有确凿的实验证据表明超临界流体的异常传热行为是浮升力和流动加速直接导致的,存在的估计浮升力和流动加速效应准则均是在常物性流体的基础上,做了大量假设得出的,不同的研究者采用浮升力和流动加速准则分析超临界流体的传热恶化得出的结论不一致.最后,基于拟沸腾理论分析超临界流体的传热恶化过程,提出超临界沸腾数区分了超临界流体正常传热与恶化传热的转换边界,为超临界流体流动传热研究提供新思路,超临界沸腾数对建立用于不同技术的超临界流体动力循环的最佳运行条件具有重要意义.  相似文献   

17.
竖直圆管中超临界压力CO2对流换热实验研究   总被引:5,自引:1,他引:4  
本文对超临界压力CO2在竖直加热圆管内的对流换热进行了实验研究,比较了不同流向、不同热流密度等对流动和换热的影响。实验结果表明,管内径为2mm时,在低进口Re条件下,由于浮升力影响导致层流向湍流提前转变, 对流换热增强;与向上流动相比,向下流动更易由层流转变为湍流;向下流动的换热要强于向上流动,表明浮升力对换热有很大影响。对于管内径为0.27 mm的微细圆管,当进口Re高于104时,浮升力的影响可以忽略,对流换热系数的变化完全由物性的变化尤其是cp的变化导致。  相似文献   

18.
采用数值模拟方法对室外微通道换热器翅片侧空气流动换热性能进行仿真计算, 探讨了在制冷工况下,不同百叶窗结构对微通道换热器空气侧传热及流动特性的影响. 结果表明j 因子的模拟结果与实验关联式之间的平均偏差在7.8% 以内,f 因子的平均误差在7.35 % 以内, 符合工程应用要求. 雷诺数较低时, 传热因子j 和阻力因子f 都随Fp 的增大而减小, 雷诺数较高时,Fp 对两者的影响不明显; 随着开窗角度增加换热器换热系数会呈现先增加后减小的趋势, 同时压降会随开窗角度的增大而有所升高.  相似文献   

19.
本文采用数值模拟方法研究在跨临界Rankine系统(SRC)中的超临界CO_2在螺旋管内的吸热特性.分析了节距、浮升力和流体自加速对换热和流动的影响。研究结果表明节距对流体在螺旋管中的流动影响十分显著,随着节距的增加,横截面上由曲率产生的二次流逐渐演化成一个在中心区域的涡流.浮升力和曲率具有相似的作用在横截面上诱发二次流,在两者的共同作用下二次流发生偏转。流体自加速产生的再层化现象严重的抑制了流体换热性能。单一的浮升力或自加速指标不能揭示SCO_2在螺旋管中的换热特性,其换热特性需要综合考虑螺旋管几何结构、流体自加速、浮升力和物性的影响。  相似文献   

20.
基于工程中存在的非均匀热流问题,针对四种非均匀热流条件下超临界压力CO2在竖直管内的流动换热特性进行了数值研究,分析了热流密度、质量流量、浮力效应和排布方式对流动换热性能以及圆管表面温度分布的影响。超临界压力CO2在非均匀热流条件下表现更为复杂的流动换热特性,轴向热流密度分布不均匀会使传热恶化,增大热流密度和减小雷诺数可以弱化传热恶化效应;热流分布不均时,Bo*比■/Re2.7更能准确地预测浮力效应;在非均匀热流条件下,竖直向下流动比竖直向上流动表现出更好的传热性能,径向速度和湍流动能分布可以较好地解释传热恶化的产生机理。本文对于光热、锅炉等非均匀热流条件下的工程应用具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号