首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new Cp*Ru(II) (Cp*: pentamethylcyclopentadienyl) complexes Cp*(dab-R)RuCl, [Cp*(dab-R)(MeCN)Ru][PF6] (dab-R: RNCH-CHNR; R: iso-propyl, mesityl), and [Cp*(cod)(MeCN)Ru][PF6], are synthesized in high yields by reacting the corresponding α-diimine or 1,5-cyclooctadiene with [Cp*RuCl]4 and [Cp*(MeCN)3Ru][PF6], respectively. The α-diimine ligands are strongly bonded to the ruthenium centre as shown by the subsequent formation of the alkynyl derivatives Cp*(dab-R)RuCCR′ (R′ = tert-butyl or phenyl) and of the cationic derivatives [Cp*(dab-R)(L)Ru][PF6] (L = CO, PMe3). The neutral and cationic α-diimine or 1,5-cyclooctadiene ruthenium complexes are compared as catalyst precursors for the ruthenium-catalyzed allylation of diethyl-sodiomalonate and diethylamine with cinnamyl acetate or ethyl cinnamyl carbonate.  相似文献   

2.
The reactions of [(arene)RuCl2]2 (arene = p-cymene or benzene) and [Cp*MCl2]2 (M = Rh or Ir) with N,N′-bidentate chelating ligands 2-[3-(2-pyridyl)pyrazolyl]pyrimidine (L1) and 4-phenyl-(2-pyridyl)thiazole (L2) leads to the formation of mononuclear complexes of general formula [(arene)/Cp*M(L)Cl]PF6. Eight such complexes have been prepared and characterized by spectroscopic techniques. In addition, five of the complexes were also characterized by single-crystal X-ray diffraction. These complexes have typical piano-stool geometries around the metal center, with five-membered metellacycles in which L1 and L2 both act as N,N′-chelating ligands. Moreover, L1 prefers to coordinate through its pyrimidine and pyrazolyl nitrogen atoms, rather than the pyridine nitrogen.  相似文献   

3.
Heterometallic Complexes with E6 Ligands (E = P, As) The reaction of [Cp*Co(μ-CO)]2 1 with the sandwich complexes [Cp*Fe(η5-E5)] 2 a: E = P, 2 b: E = As in decalin at 190°C affords besides [CpCo2E4] 4: E = P, 7: E = As and [CpFe2P4] 5 the trinuclear complexes [(Cp*Fe)2(Cp*Co)(μ-η2-P2)(μ31:2:1-P2)2] 3 as well as [(Cp*Fe)2(Cp*Co)(μ32:2:2-As3)2] 6 . With [Mo(CO)5(thf)] 3 and 6 form in a build-up reaction the tetranuclear clusters [(Cp*Fe)2(Cp*Co)E6{Mo(CO)3}] 10: E = P, 11: E = As. 3, 6 and 11 have been further characterized by an X-ray crystal structure determination.  相似文献   

4.
Treatment of [Cp*(dppe)Fe? C?C‐TTFMe3] ( 1 ) with Ag[PF6] (3 equiv) in DMF provides the binuclear complex [Cp*(dppe)Fe?C?C?TTFMe2?CH? CH?TTFMe2?C?C=Fe(dppe)Cp*][PF6]2 ( 2 [PF6]2) isolated as a deep‐blue powder in 69 % yield. EPR monitoring of the reaction and comparison of the experimental and calculated EPR spectra allowed the identification of the radical salt [Cp*(dppe)Fe?C?C?TTFMe2?CH][PF6]2 ([ 1‐CH ][PF6]) an intermediate of the reaction, which results from the activation of the methyl group attached in vicinal position with respect to the alkynyl–iron on the TTF ligand by the triple oxidation of 1 leading to its deprotonation by the solvent. The dimerization of [ 1‐CH ][PF6] through carbon–carbon bond formation provides 2 [PF6]2. The cyclic voltammetry (CV) experiments show that 2 [PF6]2 is subject to two sequential well‐reversible one‐electron reductions yielding the complexes 2 [PF6] and 2 . The CV also shows that further oxidation of 2 [PF6]2 generates 2 [PF6]n (n=3–6) at the electrode. Treatment of 2 [PF6]2 with KOtBu provides 2 [PF6] and 2 as stable powders. The salts 2 [PF6] and 2 [PF6]2 were characterized by XRD. The electronic structures of 2 n+ (n=0–2) were computed. The new complexes were also characterized by NMR, IR, Mössbauer, EPR, UV/Vis and NIR spectroscopies. The data show that the three complexes 2 [PF6]n are iron(II) derivatives in the ground state. In the solid state, the dication 2 2+ is diamagnetic and has a bis(allenylidene‐iron) structure with one positive charge on each iron building block. In solution, as a result of the thermal motion of the metal–carbon backbone, the triplet excited state becomes thermally accessible and equilibrium takes place between singlet and triplet states. In 2 [PF6], the charge and the spin are both symmetrically distributed on the carbon bridge and only moderately on the iron and TTFMe2 electroactive centers.  相似文献   

5.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

6.
Reaction of [RhCl2Cp*]2 (Cp* = η-C5Me5) with salicyloxazolines in the presence of NaOMe gives complexes [RhCl(R-saloxaz)Cp*] (1-4) which have been fully characterised. The diastereoselectivity of complexation depends on the substituents and the absolute configuration at the metal centre is unstable in solution. Treatment of 2 with 4-methylpyridine and NaSbF6 in methanol at reflux gave [Rh(4-Mepy){(S)-iPr-saloxaz}Cp*][SbF6] (5) whilst [Rh(OH2)(Me2-saloxaz)Cp*][SbF6] (6) was prepared by reaction of 1 with AgSbF6. Three complexes, [RhCl(Me2-saloxaz)Cp*] (1), [RhCl{(S)-iPr-saloxaz}Cp*] (2), and [Rh(OH2)(Me2-saloxaz)Cp*][SbF6] (6) have been characterised by X-ray crystallography. Some of the complexes, after treatment with AgSbF6, have been tested as enantioselective catalysts for the Diels-Alder reaction of methacrolein with cyclopentadiene.  相似文献   

7.
The mononuclear arene complexes [Cb*Co(arene)]+ (3a–g; Cb* = C4Me4; arene is biphenyl (a), diphenylmethane (b), 1,2-diphenylethane (c), diphenyl ether (d), p-terphenyl (e), 1,2-dimesitylethane (f), or 1,3-dimesitylpropane (g)) were synthesized by the reactions of arenes either with the benzene complex [Cb*Co(C6H6)]+ (1) under visible light irradiation or with the acetonitrile derivative [Cb*Co(MeCN)3]+ (2) in refluxing THF. The reactions of 2 with 1,2-diphenyle-thane, 1,3-dimesitylpropane, and p-terphenyl in a ratio of 2: 1 afforded the dinuclear complexes [Cb*Co(μ-η:η-arene)CoCb*]2+ (4c,e,g). The stability of the dinuclear arene complexes was estimated by DFT calculations. The structures of the complexes [3a]PF6 and [3e]PF6 ere established by X-ray diffraction. For Part 6, see Ref. 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 535–539, March, 2008.  相似文献   

8.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

9.
10.
The synthesis and characterization of Class II–III mixed valence complexes have been an interesting topic due to their special intermediate behaviour between localized and delocalized mixed valence complexes. To investigate the influence of the isocyanidometal bridge on metal-to-metal charge transfer (MMCT) properties, a family of new isocyanidometal-bridged complexes and their one-electron oxidation products cis-[Cp(dppe)Fe−CN−Ru(L)2-NC−Fe(dppe)Cp][PF6]n (n=2, 3) (Cp=1,3-cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, L=2,2’-bipyridine (bpy, 1[PF6]n ), 5,5’-dimethyl-2,2’-bipyridyl (5,5’-dmbpy, 2[PF6]n ) and 4,4’-dimethyl-2,2’-bipyridyl (4,4’-dmbpy, 3[PF6]n )) have been synthesized and fully characterized. The experimental results suggest that all the one-electron oxidation products may belong to Class II–III mixed valence complexes, supported by TDDFT calculations. With the change of the substituents of the bipyridyl ligand on the Ru centre from H, 5,5’-dimethyl to 4,4’-dimethyl, the energy of MMCT for the one-electron oxidation complexes changes in the order: 13+ < 23+ < 33+ , and that for the two-electron oxidation complexes decreases in the order 14+ > 34+ > 24+ . The potential splitting (ΔE1/2(2)) between the two terminal Fe centres for N[PF6]2 are the largest potential splitting for the cyanido-bridged complexes reported so far. This work shows that the smaller potential difference between the bridging and the terminal metal centres would result in the more delocalized mixed valence complex.  相似文献   

11.
Reactions of Halfsandwich Rhenium(V) Oligochalcogenide Complexes with Dimethyl Acetylene Dicarboxylate. Molecular Structures of the New 1,2-Dicarbomethoxy-ethene-1,2-dichalcogenate Chelate Compounds Cp*Re[S2C2(COOMe)2]2 and Cp*Re(NtBu)[Se2C2(COOMe)2] The reaction of Cp*Re(S3)(S4) ( 1a ) with dimethyl acetylene dicarboxylate (dmad) leads through the blue intermediate Cp*Re(S4)[S2C2(COOMe)2] ( 2a ) to the red bis(ethene-1,2-dithiolato) complex Cp*Re[S2C2(COOMe)2]2 ( 3a ). The product 3a is also formed in the reactions of dmad with the tetrasulfidorhenium complexes Cp*Re(L)(S4) (L = O ( 4a ), NtBu ( 5a )) while the analogous tetraselenidorhenium compounds Cp*Re(L)(Se4) ( 4b and 5b ) are only transformed to Cp*Re(L)[Se2C2(COOMe)2] (L = O ( 6b ), NtBu ( 7b )). According to the X-ray crystal structure analyses, the (ethene-1,2-dithiolato)rhenium chelate rings in 3a are folded along the S …? S vector towards the Cp* ligand (angle between the planes ReS2/S2C2 159.2°), whereas the ReSe2C2 chelate ring in 7b is planar.  相似文献   

12.
Reaction between 9,9′-spirobifluorene and [CpM]+ (where M = Fe and Ru) equivalents gives the complexes [CpRu(η6-SBF)][PF6] (1), [(CpRu)266-SBF)][PF6]2 (2) and [(CpFe)266-SBF)][PF6]2 (3), respectively. Single crystal X-ray structures of 1 and 3 show that the metal atoms exhibit distorted η6-coordination to SBF phenyl moieties primarily as a consequence of steric interactions between Cp and SBF. The structure of 3 contains each of the possible C2 enantiomers whereas NMR spectroscopy shows signals consistent with a 1:1 mixture of C2 and C1 stereoisomers for both 2 and 3. In conjunction with electrochemical data the observations are consistent with SBF acting as a molecule containing two independent biphenyl moieties.  相似文献   

13.
New complexes of cobalt(III) with the tridentate and tetradentate Schiff base ligands: 3-methoxy-2-{(Z)[(2-hydroxyphenyl)imino]methyl}phenol (H2L1), 4-[(2-hydroxyphenyl)imino]-2-pentanone (H2L2); and 2-((E)-1-(2-((E)-1-(2-hydroxy-4,5-dimethylphenyl)ethylideneamino)ethylimino)ethyl)-4,5 dimethylphenol (H2L3), namely [CoIII(L1)(N-MeIm)3]PF6 (1), [CoIII(L1)(py)3]ClO4 (2), [Co(L1)(py)3][Co(L1)2] (3) and [CoIII(L2)(N-MeIm)3]PF6 (4) and [Co(L3)(N-MeIm)2]PF6 (5), were synthesized and characterized by physico-chemical and spectroscopic methods. The crystal structures of the complexes were determined by X-ray crystallography. In each of these complexes, the cobalt(III) centre has a slightly distorted octahedral environment, utilizing all available coordination centres of the ligands. The complexes were also screened for in vitro antibacterial activities against four human pathogenic bacteria, and their minimum inhibitory concentrations indicated good antibacterial activities.  相似文献   

14.
The treatment of the complex [Ir(η2-C2H4)2(L)][PF6] (L = κ3-N,N,N-(S,S)-iPr-pybox) with acetic acid (1:1 molar ratio) at −10 °C affords the complex [Ir(C2H5)(κ2-O,O-O2CCH3)(L)][PF6] (1). The dinuclear iridium(III) complex [Ir2(μ-Cl)2(C2H5)2(L)2][PF6]2 (2) is stereoselectively obtained by spontaneous intramolecular insertion of ethylene into the iridium-hydride bond of the mononuclear complex [IrClH(η2-C2H4)(L)][PF6]. The single bridging chloride dinuclear derivative [Ir2(μ-Cl)(C2H5)2Cl2(L)2][PF6] (3) is prepared by reaction of 2 with one equivalent of NaCl. The intramolecular insertion reaction of methyl and ethyl propiolate into the Ir-H bond of the complex [IrClH(MeCN)(L)][PF6] gives stereoselectively the dinuclear complexes [Ir2(μ-Cl)2(HCCHCO2R)2(L)2][PF6]2 (R = Me (4), Et (5)). The reaction of the complexes 4, 5 with one equivalent of NaCl or with an excess of sodium acetate yields the dinuclear [Ir2(μ-Cl)(HCCHCO2R)2Cl2(L)2][PF6] (R = Me (6), Et (7)) or the mononuclear [IrCl(HCCHCO2Et)(κ1-O-O2CMe)(L)] (8) complexes, respectively. The structure of the dinuclear complex 3 · CH2Cl2 has been determined by an X-ray monocrystal study.  相似文献   

15.
Visible light irradiation of cation [(η5-C6H7)Fe(η-C6H6)]+ (1+) in acetonitrile results in substitution of the benzene ligand giving the labile acetonitrile derivative [(η5-C6H7)Fe(MeCN)3]+ (2a+). The stable isonitrile and phosphite complexes [(η5-C6H7)FeL3]+ [L = tBuNC (2b+), P(OMe)3 (2c+), P(OEt)3 (2d+)] were obtained by reaction of 1 with L in MeCN. The structures of 2cPF6, [CpFe(η-C6H6)]PF6 (3PF6), and Cp1Fe(η-C6H6)]PF6 (4PF6) were determined by X-ray diffraction.The redox activity of the cyclohexadienyl complexes 1+, 2b+?2d+ has been investigated by electrochemical techniques and compared with that of the related cyclopentadienyl complexes 3+ and 4+. DFT calculations of the redox potentials and the respective geometrical changes were performed.Variable temperature Mössbauer (ME) spectroscopy has elucidated the relationship between structure and formal oxidation state of the iron atom in these complexes. In the case of 3+ an unexpected pair of crystallographic changes has been observed and interpreted in terms of both a second and first order phase transition. The mean-square-amplitude-of-vibration of the metal atom has been compared between the ME and X-ray data. ME measurements in a magnetic field have shown that in 4+ the quadrupole splitting is positive as it is in ferrocene.  相似文献   

16.
Reactions of [Cp*M(μ-Cl)Cl]2 (M = Ir, Rh; Cp* = η5-pentamethylcyclopentadienyl) with bi- or tri-dentate organochalcogen ligands Mbit (L1), Mbpit (L2), Mbbit (L3) and [TmMe] (L4) (Mbit = 1,1′-methylenebis(3-methyl-imidazole-2-thione); Mbpit = 1,1′-methylene bis (3-iso-propyl-imidazole-2-thione), Mbbit = 1,1′-methylene bis (3-tert-butyl-imidazole-2-thione)) and [TmMe] (TmMe = tris (2-mercapto-1-methylimidazolyl) borate) result in the formation of the 18-electron half-sandwich complexes [Cp*M(Mbit)Cl]Cl (M = Ir, 1a; M = Rh, 1b), [Cp*M(Mbpit)Cl]Cl (M = Ir, 2a; M = Rh, 2b), [Cp*M(Mbbit)Cl]Cl (M = Ir, 3a; M = Rh, 3b) and [Cp*M(TmMe)]Cl (M = Ir, 4a; M = Rh, 4b), respectively. All complexes have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1a, 2b and 4a have been determined by X-ray crystallography.  相似文献   

17.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

18.
The coordination compounds [Co(DH)2(An)2][PF6] (I) and [Co(NioxH)2(Thio)2][PF6] · 0.5DMF · 0.5H2O (II), where DH- and NioxH-are dimethylglyoxime and 1,2-cyclohexanedione dioxime monoanions, respectively; An is aniline; and Thio is thiourea, were synthesized. The composition and structure of the complexes were determined by elemental analysis, IR spectroscopy, and X-ray diffraction. Compounds I and II are ionic and consist of complex cations [Co(DioxH)2(A)2]+, where DioxH is the α-dioxime residue, A is neutral organic molecule (aniline or thiourea), and [PF6]? anions. The coordination polyhedra of the Co(III) complex cations are octahedra formed by the set of N6 donor atoms of monodeprotonated DH-residues and two An molecules (in I) or by the N4S2 atoms of two NioxH-anions and two Thio molecules (in II). The formation of the crystal structure of I and II is largely determined by the [PF6]-anions in which the fluorine atoms serve as acceptors in various hydrogen bonds. The compounds were tested as stimulators of biosynthesis of extracellular proteases of the micromycete Fusarium gibbosum CNMN FD 12. The introduction of the test complexes in optimized concentrations into the nutrition medium for cultivation of the producing strain enhances the biosynthesis of acid and neutral proteases by 63.6 and 92.5%, respectively.  相似文献   

19.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

20.
The reaction of the 1,2,4-triphosphaferrocene [Cp*Fe(η5-P3C2tBu2)] (1) with CuX (X = Cl, Br, I) in a 1:1 stoichiometric ratio leads to the formation of the oligomeric compounds [{Cu(μ-X)}66-X)Cu(MeCN)3{μ,η2-(Cp*Fe(η5-P3C2tBu2))}233-(Cp*Fe(η5-P3C2tBu2))}] (X = Cl (2), Br (3)) and [{Cu(μ-I)}3{Cu(μ3-I)}3Cu(μ6-I){μ,η2-(Cp*Fe(η5-P3C2tBu2))}31-(Cp*Fe(η5-P3C2tBu2))}] (4) revealing Cu(I) halide cages surrounded by 1,2,4-triphosphaferrocene moieties. The reaction of [Cp*Fe(η5-P3C2tBu2)] with CuI in a 1:4 stoichiometry leads to the formation of the two-dimensional polymer [{Cu(μ-I)}4{Cu(μ3-I)(MeCN)}233-(Cp*Fe(P3C2tBu2))}]n (5). The oligomeric compounds show dynamic behavior in solution monitored by 31P NMR spectroscopy. All compounds are additionally characterized by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号