首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have studied theoretically the influence of symmetry breaking mechanisms: structural inversion asymmetry, bulk inversion asymmetry, relativistic and non-relativistic interface Hamiltonian and warping on spin split of levels ΔE and optical absorption of linearly polarized light in asymmetrical quantum wells made from zincblende materials grown on [001] direction. The AlSb/InAs/GaSb/AlSb broken-gap quantum wells with hybridized electron-hole states sandwiched by the AlSb barriers have been considered. We have obtained substantial contributions of these effects into the absolute values of spin split of electron and hole states and spinflip optical transitions for the initial state in-plane wave vectors along low symmetry directions such as [12].  相似文献   

2.
为了降低噪声对InAs/GaSb量子阱作为双色电探测器性能的影响,设计性能优良的光电探测器,在InAs/GaSb量子阱中加入AlSb夹层,以减少电子和空穴在界面处的复合,从而抑制由于电子和空穴复合引起的噪声。首先应用转移矩阵方法求解薛定谔方程得到量子阱中电子和空穴的能级和波函数,研究AlSb夹层对电子和空穴波函数的影响。应用平衡方程方法求解外加光场条件下的玻尔兹曼方程,研究所有电子和空穴跃迁通道对光吸收系数的贡献,重点研究了AlSb夹层厚度对光吸收系数的影响。结果表明:基于In As/GaSb的量子阱体系可以实现双色光吸收,加入AlSb夹层可以有效抑制电子和空穴在界面处的隧穿,从而降低复合噪声,同时AlSb夹层的加入也对吸收峰有影响。AlSb夹层的厚度达到2 nm即可有效降低电子和空穴复合噪声,双色光吸收峰在中远红外波段,为该量子阱作为性能良好的中远红外光电探测器提供理论支撑。  相似文献   

3.
The three semiconductors InAs, GaSb, and AlSb form an approximately lattice-matched set around 6.1 Å, covering a wide range of energy gaps and other properties. Of particular interest are heterostructures combining InAs with one or both of the antimonides, and they are emphasized in this review. In addition to their use in conventional device types (FETs, RTDs, etc.), several heterostructure configurations with unique properties have been explored, especially InAs/AlSb quantum wells and InAs/GaSb superlattices.InAs/AlSb quantum wells are an ideal medium to study the low-temperature transport properties in InAs itself. With gate-induced electron sheet concentrations on the order 1012 cm−2, they exhibit a pronounced conductivity quantization. The very deep wells (1.35 eV) provide excellent electron confinement, and also permit modulation doping up to at least 1013 electrons cm−2. Because of the very low effective mass in InAs, heavily doped wells are essentially metals, with Fermi energies around 200 meV, and Fermi velocities exceeding 108 cm s−1. Contacted with superconducting electrodes, such structures can act as superconductive weak links.InAs/GaSb-related superlattices with their broken-gap lineup behave like semimetals at large lattice periods, but if the lattice period is shortened, increasing quantization effects cause a transition to a narrow-gap semiconductor, making such structures of interest for infrared detectors, often combined with the deliberate addition of strain.  相似文献   

4.
We have measured the photoreflectance spectra at 77K of two GaSb/AlSb multiple quantum wells. Excellent quantitative agreement has been obtained between the experimental data and a theoretical calculation of inter-subband energies at Λ (GaSb). This agreement extends over the entire energy range where the hole states are confined and the electron states are below the X conduction band minimum of AlSb. This has made it possible to determine a conduction band offset parameter of 0.85 ± 0.08 (before strain) and the strain distribution. Deviations from the agreement beyond this energy range provide evidence for the mixing of the Λ-X states.  相似文献   

5.
The mechanism of oscillations of the half-width and intensity of the cyclotron resonance (CR) line of electrons in a semimetal quantum well based on an InAs/AlSb/GaSb heterostructure is investigated experimentally and theoretically. It is shown that the oscillations of the CR spectrum are due to mixing of states of the spatially separated two-dimensional electrons and holes. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 10, 753–758 (25 November 1998)  相似文献   

6.
The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. The quantum well exhibits an "inverted" phase similar to HgTe/CdTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking are essential. Remarkably, the topological quantum phase transition between the conventional insulating state and the quantum spin Hall state can be continuously tuned by the gate voltage, enabling quantitative investigation of this novel phase transition.  相似文献   

7.
The vibrational spectrum of short-period GaSb/AlSb superlattices in the frequency range of GaSb optical phonons is investigated in detail. Localization of transverse GaSb optical phonons in GaSb/AlSb superlattices is observed experimentally for the first time. The dispersions of TO and LO phonons in GaSb are measured. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 5, 361–364 (10 September 1996)  相似文献   

8.
In this paper, we present a range of modeling tools that are used in the design and performance evaluation of type-II superlattice detectors. Among these is an optical and photo carrier transport model for the spectral total external QE, which takes into account carrier diffusion length. Using this model, the diffusion length is extracted from external quantum efficiency measurements. It can also be used to fine-tune an optical cavity in relation to the wavelength range of interest for optimal quantum efficiency. Furthermore, an electrical device model for band bending, dark current and doping optimization is described. The modeling tools are discussed and examples of their use are given for MWIR type-II detectors based on InAs/AlSb/GaSb superlattices.  相似文献   

9.
Laser diodes emitting at room temperature in continuous wave regime (CW) in the mid-infrared (2–5 μm spectral domain) are needed for applications such as high sensitivity gas analysis by tunable diode laser absorption spectroscopy (TDLAS) and environmental monitoring. Such semiconductor devices do not exist today, with the exception of type-I GaInAsSb/AlGaAsSb quantum well laser diodes which show excellent room temperature performance, but only in the 2.0–2.6 μm wavelength range. Beyond 2.6 μm, type-II GaInAsSb/GaSb QW lasers, type-III ‘W’ InAs/GaInSb lasers, and interband quantum cascade lasers employing the InAs/Ga(In)Sb/AlSb system, all based on GaSb substrate, are competitive technologies to reach the goal of room temperature CW operation. These different technologies are discussed in this paper. To cite this article: A. Joullié, P. Christol, C. R. Physique 4 (2003).  相似文献   

10.
The first fully operational mid-IR (3–5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 595707 (2005).  相似文献   

11.
We use the effective bond orbital model method to examine the spin splitting due to the Rashba effect in AlSb/InAs/GaSb asymmetric heterostructures. We find for the resulting two-dimensional electron gas (2DEG) under study that large theoretical values of the Bychkov–Rashba coefficients in the range of 30 × 10 − 10to 50 × 10 − 10eV · cm can be achieved. Finally, we present a phenomenon that might lead to a direct observation of the Rashba effect. We derive an expression, valid in the diffusive limit, for the spin polarization of the current resulting from a bias parallel to the plane of the quantum well.  相似文献   

12.
A brief review is given of pump–probe studies of far infrared inter-sub-level relaxation between conduction band states in doped `quasi' quantum dots (created by the application of a magnetic field along the growth direction of an InAs/AlSb quantum well) and of mid-infrared (MIR) interband recombination in narrow gap semiconductors, using the free electron laser at FOM-Rijnhuizen (FELIX). In the former case, the longitudinal optic (LO) phonon scattering rate is shown to be suppressed by a factor of about 100 when the Landau level separation is off-resonance with the optical phonon energy; in the latter case, Auger recombination is shown to be substantially suppressed in the lead salts due to their `mirror' energy band structure.  相似文献   

13.
Coupled nanostructures have been developed in the InAs/InSb/GaSb materials system in order to extend the emission wavelength further into the infrared, beyond 2 μm. The samples studied consist of a single narrow InAs quantum well grown below a layer of InSb quantum dots in a GaSb matrix, in which the coupling has been altered by changing the thickness of a GaSb spacer layer. The overall transition energy of the combined dot–well system is generally reduced with respect to the dots and well only but the dependence on spacer thickness is more complex than that expected from a simple envelope function model.  相似文献   

14.
用分子束外延技术将高灵敏度的InAs/AlSb量子阱结构的Hall器件赝配生长在GaAs衬底上。设计了由双δ掺杂构成的Hall器件的新结构,有效地提高了器件的面电子浓度。与传统的没有掺杂的InAs/AlSb量子阱结构的Hall器件相比,室温下器件电子迁移率从15 000 cm2·V-1·s-1 提高到16 000 cm2·V-1·s-1。AFM测试表明材料有好的表面形态和结晶质量。从77 K 到300 K对Hall器件进行霍尔测试,结果显示器件不同温度范围有不同散射机构。双δ掺杂结构形成高灵敏度、高二维电子气(2DEG)浓度的InAs/AlSb异质结Hall器件具有广阔的应用前景。  相似文献   

15.
We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3–5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.  相似文献   

16.
王青  盛利 《物理学报》2015,64(9):97302-097302
用数值方法研究了拓扑绝缘体薄膜体系在外加垂直磁场 作用下其边缘态的性质. 磁场的加入通过耦合k+eA, 即Peierls势替换关系和 该作用导致的Zeeman交换场体现在哈密顿量中. 考虑窄条圆环状结构的二维InAs/GaSb/AlSb薄膜量子阱材料, 当其处于拓扑非平庸状态, 即量子自旋霍尔态时, 会出现受时间反演对称性保护的两支简并边缘态, 而在垂直磁场的作用下, 时间反演对称性被破坏, 这时能带将形成一条条的朗道能级, 原来简并的两支边缘态也会分开到朗道能级谱线的两侧, 从电子态密度的空间分布情况则可以看到边缘态分别局域在材料的两个边界. 随着磁场的增大, 位于同一边界上的不同 自旋极化的边缘态将出现分离: 一支仍然局域在边缘, 另一支则随外加磁场的增加而有逐渐演化到材料内部的趋势. 文中还计算了同一边界上的两支边缘态之间的散射, 结果表明由于两个边缘态在空间发生分离, 相互之间的散射被很大的压制, 得到了其散射随磁场增加没有明显变化的结论, 所以磁场并不会增强散射过程, 也没有破坏体拓扑材料的性质, 说明了量子自旋霍尔态在没有时间反演对称的情况下也可以有较强的稳定性.  相似文献   

17.
用分子束外延在Ga As(001)衬底上生长了两个量子阱结构的霍尔器件,一个是没有掺杂的量子阱结构,一个是Si-δ掺杂的量子阱结构。研究了霍尔器件的面电子浓度和电子迁移率与温度的关系。结果表明,在300 K下,Si-δ掺杂的量子阱结构的电子迁移率高达25 000 cm~2·V~(-1)·s~(-1),并且该器件输入电阻和输出电阻较低。同时,Si-δ掺杂的量子阱结构霍尔器件的敏感度好于没有掺杂的量子阱结构霍尔器件。  相似文献   

18.
Yi Zhang 《中国物理 B》2021,30(9):94204-094204
We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength. The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector. The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper. And the quantum well cascade laser with 100-μm-wide, 2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature. The characteristic temperature T0 is estimated at above 60 K.  相似文献   

19.
Self-assembled GaSb quantum dots (QDs) with a photoluminescence wavelength longer than 1.3 μm were successfully grown by suppressing the replacement of As and Sb on the surface of the GaSb QDs. This result means that GaSb can thus join InAs or GaInAs as a suitable material for QD lasers for optical communications.  相似文献   

20.
We analyse the potentiality of InAs/GaSb/AlSb tunnel structures for creation of the population inversion and stimulated radiation both in the presence and in the absence of magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号