首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.  相似文献   

2.
Single microwave extraction of heavy metals Cr, Ni, Zn, Cu, Cd, and Pb by the extractants CaCl(2), EDTA, CH(3)COOH and HCl has been established. The experimental conditions were optimized. A microwave power of 60% and an extraction time of 25 min were adopted. Comparison of microwave extraction and conventional extraction methods revealed that results obtained by microwave techniques were generally in a good agreement with those obtained by use of extraction methods; use of the former resulted in substantial time saving and a better precision, however. Microwave extraction was used to evaluate the bioavailability of heavy metals in soils. Single correlation analysis was performed to establish the relationship between the concentrations of the extractable heavy metals in wet rhizosphere soils and their concentrations in wheat ( Troticum aestivum L.) grown on the soils under greenhouse conditions. The correlation coefficients between the extractable metals in soils and their concentrations in wheat roots were found to be 0.5398-0.7819, 0.6425-0.8073, 0.5568-0.8276, 0.5851-0.6087 for the extractants CaCl(2), EDTA, CH(3)COOH, and HCl, respectively.  相似文献   

3.
Microwave-assisted EPA method 3051 for nitric acid leaching of environmentally key elements from sediments, soils, and sludges was tested, and the influence of leaching temperature and time on element recovery for an estuarine sediment (CRM 277) was investigated. The extraction efficiencies for four certified reference materials applying EPA method 3051, an optimized nitric acid procedure, and an aqua regia (HCl/HNO3 3:1) procedure were compared. Digestions were carried out in a high-pressure microwave system offering simultaneous temperature and pressure control for all digestion vessels employed. Eight elements (Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn) were determined by ICP-AES and ICP-MS. Extraction efficiency strongly depended on the applied leaching parameters and varied for certain elements among different materials when a nitric acid procedure was applied. In general, element recoveries obtained from the aqua regia procedure were superior to those obtained from nitric acid procedures and showed good agreement with the 95% confidence interval of the certified value for most of the elements investigated. Received: 27 March 1998 / Revised: 29 June 1998 / Accepted: 3 July 1998  相似文献   

4.
Most of the analytical techniques used to quantify elements associated with solid samples suffer from high detection limits and cannot be used for trace elements in biomass samples, particularly when only 20 mg are available for analysis. Inductively coupled plasma mass spectrometry (ICP-MS) can achieve detection limits of parts-per-trillion with liquid sample introduction by solution nebulisation. This technique was therefore tested with two standard biomass reference materials: oriental tobacco leaves and cabbage leaves. Two preparations successfully used on coal standards were used to digest the solid samples: a total digestion method (wet ashing digestion) and a partial leaching (microwave extraction). The concentrations of up to seventeen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn) were measured after the two preparations. The accuracy and sensitivity of the measurements improved when the dilution factor decreased from 5000 to 1000 and to 500. Since the proportion of mineral matter in biomass samples is small (5%), the microwave digestion extracted elements that are generally not completely extracted from coal samples (e.g. Sb). However, some trace element concentrations were below the limit of quantification after microwave extraction, even with a reduced dilution factor (As, Se and Mo) and could not be quantified. A fuel oil was also digested. The trace element concentrations were very low (between 28 and 0.1 microgram g(-1)) but acceptable results were obtained by applying a dilution factor of 100. Only six elements in the fuel oil (As, Ba, Co, Ni, Se and V) had certified or indicated values. Factors affecting the accuracy and sensitivity of the analyses are discussed. The reproducibility of analysis of the tobacco leaf standard was checked over a period of nine months by both digestion methods. The wet ashing method gave acceptable reproducibility for Ba, Cd, Co, Cu, Ga, Mn, Mo, Ni, Pb, V and Zn but poor precision for Cr, Se and Sn and showed evidence of residual chloride interference for As. The microwave extraction gave good reproducibility for As, Ba, Cd, Co, Cr, Cu, Mo, Ni and Zn but poor precision for Se and low recoveries for Ga, Mn, Sn and V. In spite of the small quantities of material analysed, it proved possible to determine the trace elements at levels down to 0.1 microgram g(-1) in the reference materials.  相似文献   

5.
Kubová J  Matús P  Bujdos M  Hagarová I  Medved' J 《Talanta》2008,75(4):1110-1122
The prediction of soil metal phytoavailability using the chemical extractions is a conventional approach routinely used in soil testing. The adequacy of such soil tests for this purpose is commonly assessed through a comparison of extraction results with metal contents in relevant plants. In this work, the fractions of selected risk metals (Al, As, Cd, Cu, Fe, Mn, Ni, Pb, Zn) that can be taken up by various plants were obtained by optimized BCR (Community Bureau of Reference) three-step sequential extraction procedure (SEP) and by single 0.5 mol L(-1) HCl extraction. These procedures were validated using five soil and sediment reference materials (SRM 2710, SRM 2711, CRM 483, CRM 701, SRM RTH 912) and applied to significantly different acidified soils for the fractionation of studied metals. The new indicative values of Al, Cd, Cu, Fe, Mn, P, Pb and Zn fractional concentrations for these reference materials were obtained by the dilute HCl single extraction. The influence of various soil genesis, content of essential elements (Ca, Mg, K, P) and different anthropogenic sources of acidification on extraction yields of individual risk metal fractions was investigated. The concentrations of studied elements were determined by atomic spectrometry methods (flame, graphite furnace and hydride generation atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry). It can be concluded that the data of extraction yields from first BCR SEP acid extractable step and soil-plant transfer coefficients can be applied to the prediction of qualitative mobility of selected risk metals in different soil systems.  相似文献   

6.
A method for simultaneously determining the trace elements in particulate matter (PM) (PM2.5) by inductively coupled plasma mass spectrometry was established. The PM2.5-loaded filter samples were digested under the optimised conditions including a mixture of HNO3–HCl–HF with ultrasonication proceeding at 70°C for 2 h. Recoveries of 90.83–103.33% were achieved for 20 elements (Co, Sr, Ag, Cd, Sb, La, Ce, Sm, W etc.) in NIST standard reference material 1648a (urban PM). PM2.5 samples were collected at urban site in Hangzhou from August 2015 to November 2015. PM2.5 concentrations of 15% sampling days exceeded the daily limitation and the mean concentrations of PM2.5 from August to November reached the 66.4% of the limitation. PM2.5 concentrations in summer were higher than that in autumn. The concentration of Zn was highest, following with Al, Pb, Mn, Cu and As. Significant enrichment was observed in Mn, Zn, Pb, Ag, V, Ni, Cu, As, Se, Hg, Co, Cd and W, which was probably induced by vehicular exhaust, oil and residual fuel combustion and industrial emissions. The daily mass concentrations of PM2.5 and elements fluctuated significantly. Rainfall could significantly reduce the concentration of Ti, Mn, Cu, Zn, As, Se, Hg, Sr, Ag, Cd, Sb, La, Ce, Sm and Pb, and the risk levels of carcinogenic elements and non-carcinogenic elements in rain day were significantly lower (43.7–81.4%) than those in non-rain day. The risk levels of Co, Cd and As could lead to adverse health outcomes through the respiratory system, which should deserve more attention, while the risk levels of Ni and non-carcinogenic elements (Hg, Mn, Cu, Zn, Pb, V) were under average risk acceptance.  相似文献   

7.
城市生活垃圾焚烧飞灰重金属的浸出特性   总被引:18,自引:3,他引:18  
对用流化床焚烧炉混烧垃圾和煤的布袋飞灰进行了重金属的TCLP(Toxicity Characteristic Leaching Procedure)浸出特性实验,探讨了液固比、初始pH值及浸出时间对飞灰中重金属Pb、Cr、Cd、Ni、Cu、Zn的浸出影响。结果表明,重金属的浸出量都随着液固比的增加而增加,其中Cr、Cu一般呈上升趋势,Cd、Ni、Zn在液固比大于20时曲线变化较平缓,Pb的浸出规律比较特殊,有一个明显的波峰和波谷。重金属在浸取液的pH≤2.90时的浸出浓度远远大于pH≥4.03时的浸出浓度。Pb、Cr、Zn随着浸出时间的增加,浸出浓度下降,而Cd、Ni上升,Cu是先上升后下降。在液固比、初始pH值及浸出时间这三个影响因素中,pH值对重金属的浸出影响较大,重金属在酸性环境下较易浸出。  相似文献   

8.
考察了几种特色南药中重金属(Cd,Cr,Cu,Fe,Mn,Ni,Pb,Sr,Zn)的含量状况,并采用形态连续萃取法分析重金属在药材中的形态分布,研究了药材煎煮时药材中重金属的释放及煎煮过程对药材中重金属形态分布的影响。结果表明,几种南药中Cr,Pb,Zn的含量较高,且巴戟天中的重金属总量高于限量标准;原药材中Cr,Cu,Mn,Ni,Pb和Zn主要存在于有机态和残留态,Fe和Sr主要存在于残留态。煎煮使南药中大量重金属迁移到药汤中;药汤中Cu,Mn,Cr,Pb和Zn主要来自于其在药材中的可交换态、碳酸盐结合态和有机态,而药汤中Sr,Ni和Fe不仅包含其非残留态,更多来自于它们的残留态。为减少药汤中重金属,对于Cu,Mn,Cr,Pb和Zn既要控制在药材中的总量,且需降低它们在药材中的非残留态含量;对于Fe,Ni和Sr则主要是控制其在药材中的总量。  相似文献   

9.
Different sample pre-treatments for seafood products have been compared with determine trace elements (As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn) by flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). Classic pre-treatments as microwave assisted-acid digestion and the slurry sampling technique were compared with new procedures such as microwave energy or ultrasound energy assisted-acid leaching process and enzymatic hydrolysis methodologies based on the use of pronase E. The methods were applied to DORM-1 and DOLT-1 reference materials with certified contents for the studied elements. The Student-Newman-Keuls (SNK) method was used to compare with element concentration means obtained with each sample pre-treatment and also the certified concentration means in both reference materials. Multivariate techniques such as principal components analysis (PCA) was also applied to comparative purposes.  相似文献   

10.

In the present study the extraction of trace and major elements (Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr, Ti, V and Zn) from spruce (Picea) needle samples under various experimental conditions, i.e., extractant, temperature and time of extraction, was examined. The effectiveness of conventional, ultrasound- and microwave-assisted extraction techniques was investigated. The replacement of a sample decomposition procedure by leaching prior to multielemental analysis by ICP-AES as well as the aspect of fractionation analysis is discussed. Standard Reference Material (CRM 101-Norway spruce needles) was used for validation of the applied analytical procedures.  相似文献   

11.
The accurate study of heavy metal speciation is important in environmental monitoring. There has been much work developing various operationally defined speciation methods for soil and sediment, but there is a need to compare the different approaches by evaluating them for the same sample. In this article, a kinetic method was applied for the heavy metal speciation of the two BCR reference materials, CRM601 and BCR701, which have been specifically developed as materials to evaluate the validated BCR three-step sequential extraction method. When EDTA was used as an extractant, 81.0% of Cd, 68.0% of Cu, 21.5% of Ni, 80.3% of Pb and 71.9% of Zn was extracted from CRM601. For BCR701, the removal ratios were 92.0, 52.3, 18.7, 50.6 and 67.5% with EDTA and 95.7, 25.2, 20.0, 52.4 and 68.5% with hydroxylamine hydrochloride as an extractant, for Cd, Cu, Ni, Pb and Zn respectively. A two-component kinetic model was applied to the extraction curve and the extractable metals were readily classified into two categories, namely, labile fraction and non-labile fractions. The rate constants obtained from the regression model were found to be useful in quantifying the lability of an element. The rate constants obtained from the labile fractions in BCR701 were higher than that of obtained from CRM601, which indicated the high lability of metals in BCR701. When compared with the sequential extraction data, it seemed that the lability of an element was positively correlated to the first step extraction fraction.  相似文献   

12.
Summary Preparation and development has been completed of ten agricultural/food reference materials (RMs): bovine muscle powder, corn starch, hard red spring wheat flour, soft winter wheat flour, whole milk powder, wheat gluten, corn bran, durum wheat flour, whole egg powder and microcrystalline cellulose. Homogeneity tests for 14 elements, Al, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were performed by the initiating laboratories by application of precise and reliable analytical methods based on flame atomic absorption spectrometry and graphite furnace atomic absorption spectrometry. An extensive set of analytical results obtained from the interlaboratory cooperative characterization campaign was assessed to provide homogeneity estimates for other elements. Estimates of homogeneity from within-laboratory precision indicated that all materials exhibited acceptable homogeneity for virtually all 29 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Se, Sr, V, Zn) for which best estimate concentration values are available. Two thirds of all homogeneity coefficients of variation were below 5%.  相似文献   

13.
Pontic shad (Alosa immaculata Bennet 1835) is an anadromous species that lives in the heavily polluted north-western part of the Black Sea and migrates into the Danube River to spawn. To assess their heavy metal contamination levels, samples of Pontic shad were collected at 863 river kilometre of the Danube River. Muscle, liver and gill samples were prepared using microwave digestion, and the analysis of Al, As, Cd, Cu, B, Ba, Fe, Mg, Sr, Zn, Li, Co, Cr, Mn, Mo, Ni and Pb was performed with inductively-coupled plasma-optic emission spectroscopy (ICP-OES). Significant differences in concentrations of analyzed elements were observed among different tissues, as well as between the genders. Al, Sr, Ba, Mg, and Li had the highest concentrations in gills, while Cd, Cu, Zn, Fe and B were highest in the liver. While the muscle had the lowest concentrations of most of the analyzed elements, it had the highest concentration of As. This study has revealed that the concentrations of Cd and As in Pontic shad muscle tissue were above the maximum acceptable concentrations for human consumption, thus precautions need to be taken in order to prevent future heavy metal contamination.  相似文献   

14.
Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g− 1) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g− 1 for As, from 0.068 to 2.85 μg g− 1 for Cd, between 26.4 and 90.7 μg g− 1 for Cr, from 9.3 to 40.0 μg g− 1 for Ni and between 16.3 and 183.0 μg g− 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.  相似文献   

15.
The determination of trace metals in river water and ground water by DPSV is seriously disturbed by the presence of organic complexes. The influence of these substances can be eliminated by acidification of the samples with acids. Cd, Pb and Cu were determined at pH 1.1 (HNO3 medium) and Zn, Cd, Pb and Cu at pH 2 (HCl medium), in both the Nile river and ground water. Zn was determined at pH 3.5 in HCl and pH 4.5 in HNO3, after neutralizing the samples with NH3/NH4Cl buffer. Manganese could then be determined, after further addition of ammoniacal buffer solution up to pH 7.5 and 8.5. Ni and Co were determined in the adsorptive mode after formation of dimethylglyoximates at pH 9.2. The effect of pH on the stripping peaks of manganese was studied. Good agreement was observed between DPSV and AAS results for Zn, Cd, Pb, Cu and Mn, but the concentrations of Ni and Co were below the detection limits for AAS. Good agreement was obtained between DPSV results in HCl and HNO3 for Ni and Co. The results indicate that decomposition of organic complexes by acidification with HNO3 is better than in the case with HCl for Zn, Pb, Cu, Ni and Co, but HCl is better than HNO3 for Cd and Mn.  相似文献   

16.
The current BCR procedure for metal fractionation recommended by the Standard Measurement and Testing Programme requires rather time-consuming sample pretreatment. Ultrasonic energy seems to be an attractive alternative for leaching metal from solid samples into a liquid extractant phase. This study aims at optimizing ultrasonic extraction in order to replace the BCR method of leaching using acetic acid and to apply the procedure of assessing element mobility in bottom sediment rich in moderately soluble carbonate minerals. The application of ICP-MS allowed the determination of As, Cd, Cr, Cu, Pb, Ni, Tl and Zn in extracts, in a wide range of concentration without any special treatment. Finally, 40’min extraction in an ultrasonic bath was proposed for evaluation of the mobile fraction of As, Cd, Cr, Cu, Pb and Zn as an assessment of environmental risk. The recovery of the ultrasound-assisted extraction in comparison to the shake-filter method, as applied in the common BCR procedure, was slightly higher than 100% for As, Cr and Pb, reasonably high (about 70%) for Cd, Zn and Cd, but did not exceed 21% for Tl. Also, the mobility and extractability (relative mobility) of the studied elements from sediment collected over one year were compares. According to the results obtained after 40’min of ultrasound-assisted extraction it can be concluded that mobility did not change over one year for Cr, Cu, As, Cd, Ni and Tl, but noticeable differences for Zn and Pb were observed. The total content of all studied elements was almost the same in samples taken in the years 2003 and 2004, respectively.  相似文献   

17.
The demonstration of an innovative miniaturised closed-vessel microwave-assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) for determination of trace metal contents in grassland (Lolio-Cynosuretum) was examined by ICP-OES. The evaluation of the method was done by comparison of the results with another miniaturised closed-vessel microwave HNO3 method (µMAE-H) and with a macro-scale microwave procedure (MAE-H). Concerning their homogeneity certified plant reference materials (CRMs) were used for validation of the applicability of µMAE-EDTA procedure. For CRMs and 72 real plant samples, no significant differences were found between µMAE-EDTA and MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents. Recovery rates achieved from µMAE-EDTA for CRMs ranged between 100.0–102.6% for the investigated elements. The key characteristics of µMAE-EDTA for determination of trace metal contents in plant samples are: (i) suitability as a high-throughput procedure; (ii) consumption of minimum volume of extracting agent and minimum amount of sample; and (iii) combination of fast, safe and environmentally friendly extraction procedure.  相似文献   

18.
The single extraction procedures validated by the standards, measurement and testing programme (formerly BCR), extraction with 0.05 mol l−1 EDTA and 0.43 mol l−1 acetic acid, have been applied to reference materials of soils and sludges with certified total values of elements, in order to determine bioavailable contents of Cd, Cu, Ni, Pb and Zn. These soils, which represent uncontaminated pedologically different types of soils from Slovakia and sludges from city water treatment are characterized for the bioavailable fraction of the metals using the procedures followed by SM&T Programme. Concentrations of the elements under the study in the extracts were determined by flame (FAAS) using calibration curves in appropriate extractants and by electrothermal (ETAAS) atomic absorption spectrometry, using technique of standard additions for the evaluation of the results. The accuracy of the extraction procedures and determinations of the elements in the extracts was controlled using CRM 483 certified for EDTA- and acetic acid-extractable contents of Cd, Cu, Ni, Pb and Zn in sewage sludge amended soil.  相似文献   

19.
The recovery from soil of 22 metals on the U.S. Environmental Protection Agency’s (EPA) Target inorganic analyte list is described. The extraction method was developed to provide a safe, rapid, and analytically reliable means of leaching metals from soils and sediments in one procedure. The influence of digestion matrices, filtration media, reference standard types and instrument performance of inductively coupled plasma/optical emission spectroscopy is presented. The method employs a closed vessel, temperature and pressure controlled, microwave acid digestion using 20 mL of 50% HNO3?:?HCl in a ratio of (3?:?2). The digestate was filtered through a positive pressure Teflon membrane cartridge. This procedure recovered all metals at concentrations equal to or greater than what is possible by EPA standardized methods or other methods published in the literature. Excellent method precision and accuracy was obtained for all metals, especially Ag and Sb. Results show that the positive Teflon membrane filtration system yielded higher and statistically different concentrations of Mn, Zn, Cu, Fe, As, Cd, Pb, Ag, and Sb than paper filtration in half the time. These findings were produced from standard reference soils and soil collected from a hazardous waste site landfill.  相似文献   

20.
Summary Ten agricultural/food reference materials (RM): bovine muscle powder, corn starch, hard red spring wheat flour, soft winter wheat flour, whole milk powder, wheat gluten, corn bran, Durum wheat flour, whole egg powder and microcystalline cellulose, were prepared by milling, irradiation, sieving, blending and packaging procedures. Homogeneity tests for 14 elements in randomly selected units were performed by the initiating laboratories by application of various analytical methods. Al, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn were determined by acid digestion flame atomic absorption spectrometry, and Cd, Co, Ni and Pb using acid digestion graphite furnace atomic absorption spectrometry after separation/preconcentration of the analytes by co-precipitation. In addition, the extensive set of analytical results obtained from the interlaboratory cooperative characterization campaign was assessed to provide homogeneity estimates for other elements. Measures of homogeneity were estimated from the within-laboratory precision from the more precise laboratories. All materials exhibited acceptable homogeneity for virtually all 29 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Se, Sr, V, Zn) for which best estimate concentration values were available, an essential pre-requisite in establishing reference values for these materials. Sixty-two percent of all homogeneity coefficients of variation (CV) were below 5%, with Br, Ca, Cl, Mg, Na, P, Zn and especially K and N exhibiting very high homogeneity CV less than 1% in some cases.Contribution no. 92–148 from Centre for Land and Biological Resources Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号