共查询到20条相似文献,搜索用时 66 毫秒
1.
均值偏移目标跟踪方法采用颜色直方图对所选择的目标区域进行建模,由于颜色直方图是一种对目标特征比较弱的描述,当有遮挡等干扰因素时,算法效果欠佳,为了有效解决均值偏移目标跟踪算法不足而导致目标定位不准的问题,提出了将颜色特征中融入像素点空间位置特征的算法来实现目标跟踪.实验表明该算法能较好地适应复杂背景视频序列,改进了传统均值偏移算法的不足,提高了算法的鲁棒性和准确性. 相似文献
2.
一种基于协方差估计的均值偏移对象跟踪算法 总被引:1,自引:0,他引:1
针对现有运动目标跟踪算法对目标大小、形状变化的适应能力较差,且不能对目标的旋转进行跟踪的问题,提出一种改进的目标跟踪算法.该算法是均值偏移算法的进一步扩展和延伸,在估计目标位置的同时用协方差矩阵来描述目标形状,结合色彩直方图,处理对象的角度和形状、大小发生变化时的跟踪问题.实验结果表明:改进的算法在不同环境下跟踪目标的鲁棒性很好,极大地提高了跟踪精度,具有很强的实用性. 相似文献
3.
《清华大学学报(自然科学版)》2010,50(10)
为实现非刚体目标精确跟踪,克服跟踪过程中目标形状变化和遮挡带来的困难,提出了一种基于多线索融合的跟踪算法。首先,对目标样本集做PCA(principal component analysis)降维,得到目标形状信息在低维空间的表达;然后,把目标形状特征、颜色统计特征与图像边缘特征以水平集能量函数的形式嵌入到粒子滤波观测模型中;最后,对3种特征采用不同生存周期的更新策略以提高跟踪算法的鲁棒性。实验结果表明:该算法可以在非刚体目标形状变化以及被遮挡的情况下,对目标精确跟踪。 相似文献
4.
采用概率神经网络(PNN)实现了对图像序列中移动目标——人头的跟踪.由于采用单一特征信息的跟踪算法在复杂环境中往往失效,故以头部的颜色信息模板和头部轮廓的梯度信息模板作为跟踪依据,并通过改变PNN的结构实现了图像信息的融合以及自适应模板修正.实验结果表明,基于PNN的算法在处理目标的旋转和遮挡时有着良好的效果,且具有简单、跟踪鲁棒性好等特点. 相似文献
5.
传统的边缘检测方法大都是基于灰度图像的,用于彩色图像边缘检测时效果往往不能令人满意.本文提出了一种新的彩色边缘检测算法,它充分考虑了彩色图像的边缘特性,使用彩色差进行跟踪,从而弥补了传统边缘检测方法检测时丢失边缘的不足.通过与其它成熟的边缘检测技术进行比较,结果显示:该算法能提取更多的彩色边缘信息,而且检测精度和效果都比较令人满意,具有一定的实用价值和良好的处理效果. 相似文献
6.
一种基于多特征融合的粒子滤波目标跟踪算法 总被引:1,自引:0,他引:1
针对采用单一图像特征进行目标跟踪时鲁棒性不高的问题,提出一种基于多特征融合的目标跟踪算法.该方法利用颜色特征和纹理特征描述目标,并将二者融合于粒子滤波框架中,提高了目标跟踪的稳定性,同时也在一定程度上克服了目标跟踪中光照变化时跟踪效果较差等缺点.实验结果表明,该文算法不仅提高了目标跟踪精度,而且具有较强的鲁棒性. 相似文献
7.
针对传统Mean Shift( MS)跟踪算法易受遮挡,复杂背景和光照变化等因素影响,导致不准确跟踪或跟踪丢失,提出了一种融合改进MS和SIFT的跟踪算法。改进的MS算法根据目标对象的最新外接矩形尺寸,确定对象的分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数,获得初步的跟踪结果;采用SIFT特征匹配和校正的方法对其初步跟踪结果进行调整;采用线性加权的方法融合改进的MS跟踪结果和SIFT校正结果,得出最终的跟踪结果。实验表明,提出的方法比传统的MS算法和固定分块的MS算法都具有更好的跟踪性能。 相似文献
8.
基于颜色信息足球机器人视觉跟踪算法 总被引:34,自引:1,他引:34
机器人足球比赛是一项非常复杂的高技术对抗活动,其中快速准确地识别小球和机器人小车是决策及控制的基础,在足球机器人视觉跟踪中,颜色信息是最主要的识别分别依据由于HSV模型更接近人眼对颜色的感知,在不同光照条件下,色调参数H数值较稳定,比较适合用识别处理更接近人眼对颜色的感知,在不同光照条件下,色调参数H数值较稳定,比较适合用做识别处理的基础。因此使用色调H和亮度V作为识别颜色的参数,同时为了提高识别速度,作了一些改进,并提出了一种闹尔夫球和机器人小车的快速识别算法,试验快速准确,证明了该算法的可靠性和有效性。 相似文献
9.
针对视觉跟踪在复杂背景下因外观特征表征不足等原因造成的目标丢失问题,结合深度光流网络估计的运动特征,文中提出了一种基于时序信息和空间信息自适应融合的视觉跟踪算法。该算法在相关滤波跟踪框架基础上,引入递归全对场变换(RAFT)深度网络估计光流以获取目标的时序信息,提取目标的CN特征和HOG特征获取空间信息,然后融合目标时序信息和空间信息,以增强对目标时空特征的表征能力;其次,建立了一种跟踪结果质量判别机制,实时调整时序信息在融合过程中的权重, 有效提升了算法在复杂动态环境下的泛化能力。为评估算法的有效性,在OTB100和VOT2019两个数据集上进行了测试,实验结果表明,与主流视觉跟踪算法相比,所提算法的跟踪性能获得了显著提升,尤其在运动模糊、快速运动等属性的视频中,具有明显优势。 相似文献
10.
针对道路分割中遇到的问题,对均值偏移算法进行了改进,给出了它在道路分割中的应用.改进的均值偏移算法对原始图像进行了特征空间变换.整个道路分割算法融合了改进的均值偏移算法、相邻帧之间的场景变化信息和车体运动信息.该方法克服了在道路有分叉及道路边界方向特殊时由于建立简化的道路模型而带来的问题.与用未改进的均值偏移算法及其它分割方法得到的分割结果相比,该方法得到的道路边界准确,可靠性高,划分出了车辆能安全通行的路面部分. 相似文献
11.
提出了一种基于自适应多特征融合的目标跟踪算法.分别利用RGB颜色和LBP纹理特征建立目标模型,通过线性加权将两类目标子特征模型代入目标相似性函数并用均值迁移算法进行目标位置优化计算.在跟踪过程中,引入S igmoid函数动态调整两类子特征权重,并利用子特征相关系数和可靠性指数对目标特征模型选择性自适应更新.实验结果表明,该算法能在跟踪场景和目标外观变化时自适应调整两种子特征权重,避免了特征失效导致的跟踪失败;特征模型选择性更新策略有效抑制了模型漂移.与单一特征和模型直接更新的跟踪方法相比,该算法在复杂跟踪环境更具有鲁棒性,能进行准确稳定的实时跟踪. 相似文献
12.
针对传统Mean Shift算法跟踪窗口固定不变,无法对不断改变尺寸的车辆目标进行有效跟踪的问题,文中根据车辆跟踪的特点,提出一种基于Mean Shift和C-V模型的车辆跟踪算法.首先利用传统Mean Shift得到初始跟踪窗口,然后根据C-V方法所提取的车辆形状信息对跟踪窗口的中心和大小做进一步修正,在跟踪过程中综合利用了目标颜色、形状等信息,同时对传统C-V方法进行改进,采用一种新的初始化水平集函数表达方法.实验结果表明,文中算法在满足实时性要求的同时,大大提高了车辆跟踪精度. 相似文献
13.
基于Mean Shift算法跟踪视频中运动目标 总被引:2,自引:0,他引:2
针对Mean Shift算法在视频中跟踪目标与背景的像素差值不明显时跟踪效果不佳,提出了Mean Shift改进算法.实验表明,该算法能有效、准确地跟踪视频中的运动目标,计算量小,可以满足实时性要求高的场合. 相似文献
14.
MeanShift算法因为简单性和稳定性在目标跟踪中得到广泛应用,但是当目标和背景的颜色模型比较接近时,传统的MeanShift算法由于缺少空间信息,且经典的相似性度量函数不易区别,导致跟踪失败。为了克服上述缺点,采用基于空间颜色特征和新的相似性度量的MeanShift算法,并提出一种融合Kalman滤波器和改进的MeanShift算法的目标跟踪方法。首先,利用改进的MeanShift算法计算出当前帧中目标的准确位置,然后使用Kalman滤波器去预测下一个初始搜索位置,用于下一帧中MeanShift迭代,最后实现对目标的跟踪。实验结果表明,该算法可以准确地跟踪目标,并且跟踪的准确率优于传统的MeanShift算法或者Kalman和传统Meanshift的融合算法。 相似文献
15.
16.
针对卡尔曼滤波和Mean Shift算法结合后对严重遮挡和遮挡后复出失效且实时性差的问题,提出一种基于卡尔曼滤波和Mean Shift动态结合的改进算法. 通过在算法中加入Bhattacharyya系数进行遮挡程度判断,并根据遮挡系数的阈值选择使用卡尔曼滤波或线性预测法更新Mean Shift迭代起点. 实验结果表明,该方法能成功实现大范围连续遮挡和目标复出情况下红外目标的跟踪,并且迭代次数和跟踪时间分别减少了9.68%和17.58%,提高了跟踪的鲁棒性和实时性. 相似文献
17.
为了提高目标跟踪算法在复杂环境下的稳健性,提出了一种将基于颜色特征的均值漂移算法和SURF(Speeded UpRobust Features)特征匹配算法相融合的目标跟踪方法。该算法首先采用颜色特征和SURF特征分别描述目标模板,利用均值漂移算法快速估计目标局部最优解。但仅采用单一颜色特征来估计目标位置,跟踪误差逐渐累积;采用SURF算法精确估算目标位置和尺度,及时修正累积误差。最后根据相似性度量Bhattacharyya系数选择较优的结果作为当前帧跟踪结果,且更新目标模板。实验结果表明,算法在目标发生较大形变、尺度变化、周边具有表观相似目标时具有很强的稳健性,且满足跟踪实时性要求。 相似文献
18.
多传感器稳健融合跟踪算法 总被引:5,自引:0,他引:5
讨论了多传感器融合跟踪的稳健性算法.针对集中式多传感器的融合跟踪结构,采用统计方法和随机逼近方法分析了传感器最优权的选取原则,得出了传感器融合对公共测量噪声没有影响的结果.依据最优选取原则给出了两种自适应融合跟踪算法,算法能在线适应传感器性能的变化,并使融合方差最小.采用典型航路进行了算法仿真,结果验证了理论分析的合理性和工程应用有效性. 相似文献
19.
基于传统指纹图像分割算法, 提出一种改进的Mean Shift指纹图像分割算法. 该算法利用指纹图像固有的方向性特性, 把经过分割后的每个指纹图像区域抽象为一个样本点, 将区域内像素点的灰度均值作为均值向量, 从而有效地实现了指纹图像分割. 实验结果表明, 该算法能准确地将指纹图像中的模糊区域和背景区域分离, 提高了指纹图像分割的精确度, 并且对于多数指纹图像准确性较好. 相似文献
20.
梁智学 《西南师范大学学报(自然科学版)》2013,38(8):141-146
Mean shift算法是一种重要的目标跟踪方法.在充分研究Mean shift算法的基础上,提出一种基于颜色纹理直方图的改进Mean shift跟踪算法.该方法首先计算目标图像区域中基于局部二值模式(local binary pattern,LBP)的主要纹理特征,通过提取主要特征消除背景和噪声等因素的干扰.另一方面,联合颜色和信息建立目标表示模型,可以为目标建模提供更丰富的纹理信息,目标表示更为准确,目标特征更明显区别于目标附近邻域内的背景特征.通过实验表明,改进的跟踪算法能有效提高目标跟踪精度,因此该目标跟踪具有较好的鲁棒性. 相似文献