首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The UV/vis absorption and fluorescence spectra of 9,9'-bisanthracenyl (BA), 9,9'- bisacridinyl (BAC), 9,9'-bicarbazyl (BC), and 9-(9'-anthracenyl)carbazole (C9A) were precisely recorded in solvents that change their solvent dipolarity scale (SdP) values from 0.000 (in 2-methylbutane at 293 K) to 1.294 (in 1-chlorobutane at 77 K). An analysis based (i) on the solvatochromic behavior of the four 9,9'-biaryl compounds in terms of the dipolarity of the solvents used, quantified by means of their SdP values, and (ii) on the behavior of the emission band profiles, allows the conclusion that, whereas the apolar 9,9'-biaryl compounds BA, BAC, and BC need solvents with SdP values larger than 0.74 to give a twisted intramolecular charge-transfer (TICT) process after excitation, for dipolar C9A the TICT mechanism is predominant already at solvent SdP values smaller than 0.23, i.e., near a solvent dipolarity of 0. The accuracy and simplicity achieved by application of the SdP scale in analyzing the solvatochromic behavior of the four 9,9'-biaryl compounds studied make evident the advantages of this solvent scale in comparison to other empirical solvent scales, which not only include the solvent's dipolarity but also consist of a more limited numerical range of values only.  相似文献   

2.
A remarkable influence of the orientation of a polar side chain on the direction of the S(1) ← S(0) transition dipole moment of monosubstituted benzenes was previously reported from high-resolution electronic spectroscopy. In search for a more general understanding of this non-Condon behavior, we investigated ethylamino-substituted indole and benzene (tryptamine and 2-phenylethylamine) using ab initio theory and compared the results to rotationally resolved laser-induced fluorescence measurements. The interaction of the ethylamino side chain with the benzene chromophore can evoke a rotation and a change of ordering of the molecular orbitals involved in the excitation, leading to state mixing and large changes in the orientation of the excited-state transition dipole moment. These changes are much less pronounced in tryptamine with the indole chromophore, where a rotation of the transition dipole moment is attributed to Rydberg contributions of the nitrogen atom of the chromophore. For phenylethylamine, a strong dependence of the oscillator strengths of the lowest two singlet states from the conformation of the side chain is found, which makes the use of experimental vibronic intensities for assessment of relative conformer stabilities at least questionable.  相似文献   

3.
Three isomeric 7-(pyridyl)indoles reveal very different, solvent-dependent photophysical properties. Due to rapid excited state depopulation involving intramolecular hydrogen bonding, 7-(2′-pyridyl)indole is practically nonfluorescent at room temperature. In nonpolar and polar aprotic solvents, 7-(3′-pyridyl)indole and 7-(4′-pyridyl)indole fluorescence strongly, but the emission is quenched in alcohols. Syn and anti rotameric forms of 7-(3′-pyridyl)indole are detected, each quenched to a different degree. This differential quenching is interpreted as evidence of enhanced S1 → S0 internal conversion being more efficient in cyclic solvates, with alcohol molecules forming a bridge between the proton donor and acceptor groups of an excited chromophore.  相似文献   

4.
Abstract— In an attempt to study the quenching of the triplet state of acetophenone by indole, we have prepared the compounds containing these chromophores intramolecularly. The emission measurements in rigid glasses at 77 K have indicated that the quenching of the triplet acetophenone is due to intramolecular triplet-triplet energy transfer to the indole chromophore, resulting in the sensitization of the indole phosphorescence. The efficiency of the energy transfer has reached ca. 100% in ethanol glasses, while it has been suggested that in methylcyclohexane glasses, the indole chromophore except for 1-methyl derivative is subjected to strong interaction with the acetophenone chromophore other than electronic energy transfer.  相似文献   

5.
Spectroscopic and photophysical properties of safranine O (Sf) were investigated in binary water/solvent mixtures. It was found that these properties are strongly solvent-dependent. A blue shift is observed for both the ground-state absorption and the triplet-triplet main absorption band when the solvent polarity augments. At the same time a red shift of the fluorescence emission band takes place. These facts are interpreted in terms of higher dipole moment of the dye molecule in the S(1) state as compared with the S(0) state, while a decrease in the dipole moment of the triplet state T(n) with respect to the triplet state T(1) occurs. The Stokes' shift and the fluorescence lifetime shows a linear correlation with the E(T)(30) parameter, while a non-linear behavior is observed when a correlation with models of a continuous dielectric solvent is attempted. These results suggest the operation of strong specific interactions of Sf with solvent molecules, most likely hydrogen bonding. From fluorescence lifetime and quantum yield determinations, as well as intersystem-crossing quantum yields, the solvent dependence of the photophysical kinetic parameters were obtained. The radiative fluorescence rate constant can be adequately reproduced by calculations based on the UV-Vis absorption and emission spectra, as given by the Strickler-Berg equation.  相似文献   

6.
Derosa F  Bu X  Pohaku K  Ford PC 《Inorganic chemistry》2005,44(12):4166-4174
The synthesis and spectroscopic properties of new cyclam-type ligands 5,7-dimethyl-6-R-1,4,8,11-tetraazacyclotetradecane (L), where R is a pendant chromophore such as an anthracene derivative, are reported. These ligands were prepared according to a nickel(II) template procedure, and the X-ray crystal structures of several Ni(II) intermediates are described. Reaction of the free base ligands L with CrCl(3)x3THF resulted in facile formation of trans-[Cr(L)Cl(2)]Cl complexes, and the structures and spectroscopic characterizations of these complexes are also described. Examination of the photophysical properties of trans-[Cr(L)Cl(2)]Cl solutions at 77 K demonstrated the emission spectra to be dominated by phosphorescence from the ligand field doublet of the chromium(III) center. This also applies to the Cr(III) complex trans-[Cr(mac)Cl(2)]Cl, where mac is the anthracene derivative 5,7-dimethyl-6-anthracenylcyclam. Excitation into the pi-pi(*) states of the anthracene leads to marked quenching of the fluorescence from this chromophore and sensitized phosphorescence from the metal-centered doublet state.  相似文献   

7.
A systematic study of 1-azacarbazole (1AZC) dissolved in 2-methylbutane (2MB) at gradually decreasing temperatures from room temperature to 77 K revealed the chromophore to exhibit four fluorescence emissions: a structured fluorescence in the UV region that is due to the 1-azacarbazole monomer, a structureless emission centered at 500 nm and assigned to the centrosymmetric dimer formed by double hydrogen bonding, an also structureless emission centered at ca. 400 nm and due to a noncentrosymmetric doubly hydrogen bonded dimer, and a fourth, structured emission at 357 and 375 nm due to a card-pack dimer. Evidence obtained from dilute solutions of 1-azacarbazole is for the first time assigned to a card-pack dimer, consistent with the photophysical behavior of carbazole in the same medium. Previously established photophysical evidence for such an interesting compound, which has been used as a model for studying light-induced double proton transfer mutational mechanisms, is completed or discussed here. The evidence obtained in this work reveals that 1AZC at a 10-4 M solution in 2MB does not exhibit doubly hydrogen bonded centrosymmetric dimer emission as the temperature decreases from room temperature up to 113 K (with a corresponding exponential increase of the solvent viscosity). At this temperature and below, however, the doubly hydrogen bonded centrosymmetric dimer emission appears. This evidence and others implemented in this work contradict the assumption of Waluk et al. that the appearance of the doubly hydrogen bonded centrosymmetric dimer is hindered by an increased viscosity of the medium.  相似文献   

8.
The electronic (absorption spectra) and electrochemical properties of a novel series of triphenylpyridinium (H(3)TP(+)=A) electron-acceptor-based polyad species have been correlated with their steady-state (emission spectra) and time-resolved (ns and ps laser flash photolysis) photophysical behavior (at both 293 and 77 K). These d(6) transition metal complexes (M=Ru(II), Os(II)) of 2,2':6',2"-terpyridines (tpy) are denoted as P0 and P1, depending on whether they incorporate H(3)TP(+)-tpy or H(3)TP(+)-ptpy ligands (ptpy=4'-phenyl-substituted tpy), respectively. For the P0/Ru-based compounds, the luminescence quantum yield and excited-state lifetime of the "[Ru(tpy)(2)](2+)" chromophore have been found to be considerably enhanced at 293 K (e.g., tau=0.56 ns for isolated P0/Ru in acetonitrile vs tau=55 and 27 ns for P0/Ru within P0 A/Ru and P0 A(2)/Ru (A=electron acceptor), respectively). In spite of the lack of conjugation between P0 and A, this behavior has been ascribed to a through-bond mediated electronic substituent effect originating from the directly connected H(3)TP(+) electron-withdrawing group. For the P1-based compounds, the possibility of photoinduced electron-transfer (PET) processes with the formation of charge-separated (CS) states is discussed, and the main results may be summarized as follows: 1) when involved, the electron-donor D (D=Me(2)N of Me(2)N-ptpy) is strongly electronically coupled to P1 but cannot facilitate a reductive quenching of *P1 to give the *[D(+)-P1(-)]-type of CS state for thermodynamic reasons, irrespective of whether M is Ru(II) or Os(II); 2) the P1 and A components have been shown to be very weakly electronically coupled; 3) at 293 K, P1/Ru- and P1/Os-based polyad systems display distinct photophysical behavior with respect to A, with only the latter exhibiting a noticeable quenching of luminescence (up to 50 % for P1 A/Os with respect to P1/Os); 4) for assemblies made up of P1/Os and A components only, comparison between their room-temperature (RT) and low-temperature (LT; 77 K, frozen matrix) photophysical properties, together with information gleaned from combined transient absorption experiments and spectroelectrochemical studies of P1/Os and P1 A/Os, further supported by thermodynamic considerations, allowed us to conclude that a PET process does take place within the P1 A/Os dyad leading to the *[P1(+)-A(-)] CS state. For the DP1 A/Os triad, the formation of such a CS state followed by an enhanced electron-releasing inductive effect from D is postulated.  相似文献   

9.
A two-step, one-flask synthesis of central seven-membered borondifluoride-3,3-dimethyl-2-[2-(2-pyrrolyl)ethenyl] indole (BOPYIN) ligands has been developed by using the unexplored 3,3-dimethyl-2-[2-(2-pyrrolyl)ethenyl] indole. The simple synthetic approach has enabled modification of the electronic structure by changing the substituents on the indole unit. X-ray analysis indicated that conformations of the seven-membered BF2 complex including BOPYIN and diazaborepin differ from that of the five- and six-membered organoboron complexes. Interestingly, the bond angle of the N⋅⋅⋅B−N bond increases with the number of atoms in the core ring, based on Baeyer strain theory. These unsymmetric BOPYIN derivatives have excellent photophysical properties, including high fluorescence quantum yields, except for BOPYIN- 4 in the solution state, large Stokes shifts, and good molar absorptivity. The dipole moment of BOPYIN- 3 in the first excited singlet state and ground state was demonstrated by a linear Lippert–Mataga plot. The absorption and emission spectra were not mirror images for BOPYIN- 1 – 3 and 5 , in contradiction to Kasha's rule, as determined by TDDFT. The synthesized BOPYINs have been shown to be biocompatible fluorophores in cell bioimaging.  相似文献   

10.
Hydrogen bond pairs involving the chromophore indole have been extensively studied in the gas phase. Here, we report high resolution electronic spectroscopy experiments on the indole-NH(3) hydrogen bond pair in the absence and presence of an electric field. The S(1)-S(0) origin band of this complex recorded in zero field at high resolution reveals two overlapping spectra; a consequence of NH(3) hindered internal rotation. The barrier to internal rotation is predicted by theory to be less than 20 cm(-1) in the ground state, therefore requiring a non-rigid rotor Hamiltonian to interpret the spectra. Conducting the experiment in the presence of an applied electric field further perturbs the already congested spectrum of the complex, but makes possible the measurement of the permanent electric dipole moments in its S(0) and S(1) states. These values reveal significant changes in electron distribution that arise from hydrogen bonding effects.  相似文献   

11.
Arcyriarubin A and arcyriaflavin A, two strongly emissive and intensely colored natural products containing both two indoles and a maleimide unit, are investigated (in the flavin the two indole moieties are coupled by a cyclization). The photophysical properties of these compounds were studied in several solvents using UV-vis absorption, steady-state and time-resolved emission, nano- and femtosecond transient absorption spectroscopy. Furthermore, the effect of complexation with zinc(II) 1,4,7,11-tetraazacyclododecane on the photophysical properties of these natural products has been investigated. The chemical structures of the compounds would suggest a charge transfer (CT) character in the ground and/or excited states, since indole is a well-known electron donor and maleimide is a good electron acceptor. Their solvatochromic behavior was investigated by using the Kamlet-Taft approach and indicates only a small CT character in the excited state. This is substantiated by the time-resolved spectroscopy and the complexation study. Molecular orbital calculations indicate that there are no electronic transitions in which a large electron density is transferred from one indole unit to the maleimide part. All calculated orbitals show a strong delocalization of the electron density over the whole molecule. These findings corroborate the experimental results. Whereas the two compounds do have a substantial (calculated) ground-state dipole moment (6 D) and show some solvatochromic behavior, they behave more like conjugated aromatic systems than like electron donor-acceptor systems.  相似文献   

12.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

13.
The solvatochromism of the n ? π* electronic transitions of acetone, which is determined in this work by means of absorption and emission spectroscopy, has been studied using the pure solvent scales for polarizability, dipolarity and acidity of the medium. From these analyses, the necessary reduction of the dipole moment and the increase of the polarizability for acetone on electronic excitation are evaluated using Abe's approach (Bull. Chem. Soc. Jpn. 1966, 39, 936). The influence that the increase of the aromatic structure (cf. acetophenone) and the lengthening of the size of the alkyl substituents R- (cf. R-CO-R) cause on the solvatochromism of acetone is discussed. Also, we have shown that the photophysical model proposed by Pimentel (J. Am. Chem. Soc. 1957, 79, 3323), which is widely accepted for explaining the n → π* blue shift phenomenon for hydrogen-bonded complexes, is mistaken due to ignoring the acid-base changes undergone on electronic excitation; accordingly, a new photophysical model has been proposed.  相似文献   

14.
We have applied time-dependent density functional theory (TDDFT) to study the valence pi-pi* excited states of the tryptophan chromophore in the environment of the proteins barnase and human serum albumin. The chromophore is represented by indole. Due to the approximate nature of TDDFT, in the gas phase the calculated vertical transition energies to the 1L valence states are reordered with respect to experiment. The 1L(a) state responds more than the 1L(b) state to the local environment, described fully at the TDDFT level, and to bulk environment, described by a set of point charges. Nevertheless, the vertical transitions are readily identified. For human serum albumin, our calculations predict distinct spectral characteristics between structures with different tryptophan side chain torsion angles. The computational tractability of TDDFT relative to more accurate ab initio methods allows a large part of the surrounding protein environment (up to 100 atoms) to be explicitly included in the TDDFT calculations.  相似文献   

15.
Refractive indices of binary mixtures formed by a cyclic ether (tetrahydrofuran or tetrahydropyran) and each of the isomeric chlorobutanes (1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane and 2-chloro-2-methylpropane) have been measured at two temperatures, 298.15?K and 313.15?K. From experimental data, refractive index deviations and molar refractions have been calculated. Furthermore, several common mixing rules have been used to predict refractive indices of the mixtures from their experimental densities reported previously.  相似文献   

16.
By means of steady-state fluorescence spectroscopy we explore the photophysics of two lowest lying singlet excited states in two natural 15-cis-carotenoids, namely phytoene and phytofluene, possessing three and five conjugated double bonds (N), respectively. The results are interpreted in relation to the photophysics of all-transcarotenoids with varying N. The fluorescence of phytofluene is more Stokes-shifted relative to that of phytoene, and is ascribed to the forbidden S1-->S0 transition, with its first excited singlet state (S1) lying 3340 cm-1 below the dipole allowed second excited singlet state (S2), at 77 K. For phytoene the S2 and S1 potential surfaces are closer in energy, probably giving rise to the mixed S2 and S1 fluorescence characteristics. The origin of phytoene fluorescence is discussed and is suggested to be due to the S1-->S0 transition; with the S1 state located 1100 cm-1 below S2 at 77 K. The dependence of the fluorescence quantum yield on temperature and viscosity shows that large amplitude molecular motions are involved in the radiationless relaxation process of phytoene. The transition dipole moment of absorption and emission are parallel in phytoene and nonparallel in phytofluene.  相似文献   

17.
We describe the synthesis, electrochemical, and photophysical properties of two new luminescent Ru(II) diimine complexes covalently attached to one and three 4-piperidinyl-1,8-naphthalimide (PNI) chromophores, [Ru(bpy)(2)(PNI-phen)](PF(6))(2) and [Ru(PNI-phen)(3)](PF(6))(2), respectively. These compounds represent a new class of visible light-harvesting Ru(II) chromophores that exhibit greatly enhanced room-temperature metal-to-ligand charge transfer (MLCT) emission lifetimes as a result of intervening intraligand triplet states ((3)IL) present on the pendant naphthalimide chromophore(s). In both Ru(II) complexes, the intense singlet fluorescence of the pendant PNI chromophore(s) is nearly quantitatively quenched and was found to sensitize the MLCT-based photoluminescence. Excitation into either the (1)IL or (1)MLCT absorption bands results in the formation of both (3)MLCT and (3)IL excited states, conveniently monitored by transient absorption and fluorescence spectroscopy. The relative energy ordering of these triplet states was determined using time-resolved emission spectra at 77 K in an EtOH/MeOH glass where dual emission from both Ru(II) complexes was observed. Here, the shorter-lived higher energy emission has a spectral profile consistent with that typically observed from (3)MLCT excited states, whereas the millisecond lifetime lower energy band was attributed to (3)IL phosphorescence of the PNI chromophore. At room temperature the data are consistent with an excited-state equilibrium between the higher energy (3)MLCT states and the lower energy (3)PNI states. Both complexes display MLCT-based emission with room-temperature lifetimes that range from 16 to 115 micros depending upon solvent and the number of PNI chromophores present. At 77 K it is apparent that the two triplet states are no longer in thermal equilibrium and independently decay to the ground state.  相似文献   

18.
The photophysical properties of a new compound 1-keto-2-(p-dimethylaminobenzal)-tetrahydronaphthalene in various solvents at room temperature were characterized by the absorption and steady-state fluorescence technique. The bathochromic shift on the emission spectra, the broad halfwidth of the fluorescence band and the increase in the excited state dipole moment occurred. These results gave the evidence about the intramolecular charge transfer (ICT) character in the emitting singlet state of the compound.  相似文献   

19.
The synthesis, electrochemistry, and photophysical behavior of a Pt(II) terpyridyl perylenediimide (PDI) acetylide (1) charge-transfer complex is reported. The title compound exhibits strong (ε ≈ 5 × 10(4) M(-1)cm(-1)) low-energy PDI acetylide-based π-π* absorption bands in the visible range extending to 600 nm, producing highly quenched singlet fluorescence (Φ = 0.014 ± 0.001, τ = 109 ps) with respect to a nonmetalated PDI model chromophore. Nanosecond transient absorption spectroscopy revealed the presence of a long excited-state lifetime (372 ns in 2-methyltetrahydrofuran) with transient features consistent with the PDI-acetylide triplet state, ascertained by direct comparison to a model Pt(II) PDI-acetylide complex lacking low-energy charge-transfer transitions. For the first time, time-resolved step-scan FT-IR spectroscopy was used to characterize the triplet excited state of the PDI-acetylide sensitized in the title compound and its associated model complex. The observed red shifts (~30-50 cm(-1)) in the C═O and C≡C vibrations of the two Pt(II) complexes in the long-lived excited state are consistent with formation of the (3)PDI acetylide state and found to be in excellent agreement with the expected change in the relevant DFT-calculated IR frequencies in the nonmetalated PDI model chromophore (ground singlet state and lowest triplet excited state). Formation of the PDI triplet excited state in the title chromophore was also supported by sensitization of the singlet oxygen photoluminescence centered at ~1275 nm in air-saturated acetonitrile solution, Φ((1)O(2)) = 0.52. In terms of light emission, only residual PDI-based red fluorescence could be detected and no corresponding PDI-based phosphorescence was observed in the visible or NIR region at 298 or 77 K in the Pt(II) terpyridyl perylenediimideacetylide.  相似文献   

20.
This article presents the synthesis and electroluminescent (EL) properties of a stable blue‐light‐emitting copolyfluorene ( P1 ) consisting of carbazole, oxadiazole and charge‐trapping anthracene groups by Suzuki coupling reaction. The hole‐transporting carbazole and electron‐transporting oxadiazole improve charges injection and transporting properties, whereas the anthracene is the ultimate emitting chromophore. The thermal, photophysical, electrochemical, and EL properties of P1 were investigated by thermogravimetric analysis, differential scanning calorimeter, optical spectroscopy, cyclic voltammetry, and EL devices fabrication and characterization. P1 demonstrated high‐thermal stability with thermal decomposition and glass tranistion temperatures above 400 and 145°C, respectively. In film state, P1 showed blue emission at 451 nm attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light‐emitting diodes using P1 as the emitting layer (ITO/PEDOT:PSS/ P1 /Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11). The results indicate that copolyfluorene is a promising candidate for the blue‐emitting layer in the fabrication of efficient PLEDs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号