首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
The structural and electronic properties of Ce(1-x)Cu(x)O(2) nano systems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Cu atoms embedded in ceria had an oxidation state higher than those of the cations in Cu(2)O or CuO. The lattice of the Ce(1)(-x)Cu(x)O(2) systems still adopted a fluorite-type structure, but it was highly distorted with multiple cation-oxygen distances with respect to the single cation-oxygen bond distance seen in pure ceria. The doping of CeO(2) with copper introduced a large strain into the oxide lattice and favored the formation of O vacancies, leading to a Ce(1-x)Cu(x)O(2-y) stoichiometry for our materials. Cu approached the planar geometry characteristic of Cu(II) oxides, but with a strongly perturbed local order. The chemical activities of the Ce(1-x)Cu(x)O(2) nanoparticles were tested using the reactions with H(2) and O(2) as probes. During the reduction in hydrogen, an induction time was observed and became shorter after raising the reaction temperature. The fraction of copper that could be reduced in the Ce(1-x)Cu(x)O(2) oxides also depended strongly on the reaction temperature. A comparison with data for the reduction of pure copper oxides indicated that the copper embedded in ceria was much more difficult to reduce. The reduction of the Ce(1-x)Cu(x)O(2) nanoparticles was rather reversible, without the generation of a significant amount of CuO or Cu(2)O phases during reoxidation. This reversible process demonstrates the unusual structural and chemical properties of the Cu-doped ceria materials.  相似文献   

2.
Tetragonal ZrO(2)-CeO(2) solid solutions with composition Zr(1-x)Ce(x)O(2) (x = 0.1, 0.2, and 0.3) were synthesized in a citrate complexation route and characterized by XRD, XPS, UV-vis diffuse reflectance and ESR measurements. The formation of the homogeneous solid solution Zr(1-x)Ce(x)O(2) constructed the oxo-bridged bimetallic Zr(IV)-O-Ce(III) linkage between two neighboring flattened tetrahedrons of the structural framework. As compared to their parent oxides, the ZrO(2)-CeO(2) solid solutions exhibited optical absorption extending to longer wavelengths in the visible region. The red shift in the absorption spectrum was demonstrated to be partially due to a metal-to-metal charge transfer (MMCT) transition of the oxo-bridged Zr(IV)-O-Ce(III) linkage. The visible-light induced MMCT transition of Zr(IV)-O-Ce(III)→ Zr(III)-O-Ce(IV) resulted in the generation of the additional Ce(IV) and superoxide anion radical formed by the interaction of Zr(III) with adsorbed O(2). Catalytic activity evaluation revealed that the photoexcitation of the MMCT over the solid solution can initiate the degradation of RhB and 2,4-DCP upon visible-light irradiation, whereby Zr(III) and Ce(IV) act as a site-specific reducing and oxidizing center, respectively. The structure of the solid solution Zr(1-x)Ce(x)O(2) and the oxidation states of Zr and Ce species are also discussed in detail.  相似文献   

3.
The photocatalytic activity of (Ga(1-x)Zn(x))(N(1-x)O(x)) loaded with Rh-Cr mixed-oxide (Rh(2-y)Cr(y)O3) nanoparticles for overall water splitting under visible-light irradiation (lambda > 400 nm) is investigated with respect to reaction pH and gas pressure. The photocatalytic performance of the catalyst is found to be strongly dependent on the pH of the reactant solution but largely independent of gas pressure. The present photocatalyst exhibits stable and high photocatalytic activity in an aqueous solution of pH 4.5 for 72 h. The photocatalytic performance is much lower at pH 3.0 and pH 6.2, attributable to corrosion of the cocatalyst and hydrolysis of the catalyst. The dispersion of Rh(2-y)Cr(y)O3 as a cocatalyst on the (Ga(1-x)Zn(x))(N(1-x)O(x)) surface promotes hydrogen evolution, which is considered to be the rate-determining step for overall water splitting on this catalyst.  相似文献   

4.
The interaction of 20 wt% 12-tungstophosphoric acid with Ce(x)Zr(1-x)O(2) solid solutions has been studied by PXRD, FTIR, FT-Raman, H(2)-TPR, NH(3)-TPD, diffuse reflectance UV-vis-NIR, and (31)P MAS NMR techniques. The study indicates that the Keggin anions are attached to Lewis metal ion centres and anion vacancies on Ce(x)Zr(1-x)O(2) supports through WO terminal bonds. The Keggin units at the interface are chemically perturbed as indicated by non-intrinsic IR bands observed at 958 cm(-1) (WO(ter) bond), and 1052, 1102 cm(-1) (PO bond). NH(3)-TPD shows that the Keggin anions fixed to Lewis sites and/or oxygen ion vacancies decrease the ammonia uptake on Ce(x)Zr(1-x)O(2) solid solutions. H(2)-TPR shows modified redox behaviour of Ce(x)Zr(1-x)O(2) solid solutions due to the simultaneous reduction of ceria, decomposition of Keggin anions and the reduction of WO(3). The broadening of (31)P MAS NMR and DR-UV-vis-NIR spectra demonstrate the existence of chemical interactions between the Keggin anions and Ce(x)Zr(1-x)O(2) supports.  相似文献   

5.
New highly mixed phases have been identified in Cu/ZnO systems by EXAFS and XANES at both the Cu and Zn K-edge. The phases were generated by ball-milling Cu(2)O/ZnO mixtures under three different atmospheres of synthetic air (SA), SA + CO(2) and CO(2). The system milled in CO(2) shows disproportionation of Cu(2)O into Cu(0), Cu(1+) (cuprite Cu(2)O-type phase) and Cu(2+) (tenorite CuO-type phase), while most of the Zn(2+) is transformed into a nanocrystalline/amorphous ZnO-type zincite that forms a superficial mixture of oxide and carbonate phases. When synthetic air is added to the CO(2) atmosphere, ball milling results in the oxidation of nearly half the Cu(1+) into Cu(2+) with no Cu metal formed. The copper phase in this material is almost entirely amorphous. In SA, a significant amount of Cu(2+)- and Zn(2+)-based phases appears to react to form a nanocrystalline/amorphous Cu(1-x)Zn(x)O (x approximately 0.3) solid solution. This distorted rock saltlike solid solution, in which Zn and Cu feature different octahedral environments, was never reported before. It is thought to be formed by incorporation of Zn(2+) in the Cu fcc sublattice of the cuprite Cu(2)O matrix and the concomitant oxidation of Cu(1+) into Cu(2+). The formation of such a highly mixed Cu(1-x)Zn(x)O phase indicates strong Cu/Zn interaction in the Cu/ZnO system, which also suggests the presence of highly mixed phases in conventionally prepared activated catalysts.  相似文献   

6.
C Liu  H Liang  X Kuang  J Zhong  S Sun  Y Tao 《Inorganic chemistry》2012,51(16):8802-8809
A series of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) phosphors were prepared by a high-temperature solid-state reaction technique. Rietveld refinement was performed using the powder X-ray diffraction (XRD) data, which shows occupation of Ce(3+) on both Ca(2+) and La(3+) sites with a preferred location on the La(3+) site over the Ca(2+) site. The prepared samples contain minor second phase LaBO(3) with contents of ~0.64-3.27 wt % from the Rietveld analysis. LaBO(3):1%Ce(3+) was prepared as a single phase material and its excitation and emission bands were determined for identifying the influence of impurity LaBO(3):Ce(3+) luminescence on the spectra of the Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples. The luminescence properties of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples under vacuum ultraviolet (VUV) and UV excitation were investigated, which exhibited two-center luminescence of Ce(3+), assigned to the Ce(1)(3+) center in the La(3+) site and Ce(2)(3+) center in the Ca(2+) site, taking into account the spectroscopic properties and the Rietveld refinement results. The influences of the doping concentration and the excitation wavelength on the luminescence of Ce(3+) in Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) are discussed together with the decay characteristics.  相似文献   

7.
The electronic band structure at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface was investigated for its potential application in Cd-free Cu(In,Ga)Se(2) thin film solar cells. Zn(1-x)Mg(x)O thin films with various Mg contents were grown by atomic layer deposition on Cu(In(0.7)Ga(0.3))Se(2) absorbers, which were deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The electron emissions from the valence band and core levels were measured by a depth profile technique using X-ray and ultraviolet photoelectron spectroscopy. The valence band maximum positions are around 3.17 eV for both Zn(0.9)Mg(0.1)O and Zn(0.8)Mg(0.2)O films, while the valence band maximum value for CIGS is 0.48 eV. As a result, the valence band offset value between the bulk Zn(1-x)Mg(x)O (x = 0.1 and x = 0.2) region and the bulk CIGS region was 2.69 eV. The valence band offset value at the Zn(1-x)Mg(x)O/CIGS interface was found to be 2.55 eV after considering a small band bending in the interface region. The bandgap energy of Zn(1-x)Mg(x)O films increased from 3.25 to 3.76 eV as the Mg content increased from 0% to 25%. The combination of the valence band offset values and the bandgap energy of Zn(1-x)Mg(x)O films results in the flat (0 eV) and cliff (-0.23 eV) conduction band alignments at the Zn(0.8)Mg(0.2)O/Cu(In(0.7)Ga(0.3))Se(2) and Zn(0.9)Mg(0.1)O/Cu(In(0.7)Ga(0.3))Se(2) interfaces, respectively. The experimental results suggest that the bandgap energy of Zn(1-x)Mg(x)O films is the main factor that determines the conduction band offset at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface. Based on these results, we conclude that a Zn(1-x)Mg(x)O film with a relatively high bandgap energy is necessary to create a suitable conduction band offset at the Zn(1-x)Mg(x)O/CIGS interface to obtain a robust heterojunction. Also, ALD Zn(1-x)Mg(x)O films can be considered as a promising alternative buffer material to replace the toxic CdS for environmental safety.  相似文献   

8.
Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site. Prior to DFT optimization, small distortions in selected Ce-O distances were imposed to explore the energetics associated with reduction of Ce(4+) to Ce(3+) due to charge transfer to Ce during M adsorption. Charge redistribution is confirmed with spin density isosurfaces and site projected density of states. We demonstrate that Cu and Au atoms can be oxidized to Cu(2+) and Au(2+), although the adsorption energy, E(ads), of Au(2+) is less favorable and, unlike Cu(2+), it has not been experimentally observed. Oxidation of Ag always results in Ag(+). For M adsorption at an O bridge site, E(ads)(2NN) > E(ads)(3NN) > E(ads)(1NN) where NN denotes the nearest neighbor Ce(3+) site relative to M. Alternatively, for M adsorption at a Ce bridge site, E(ads)(3NN) > E(ads)(2NN) > E(ads)(1NN). The adsorption behavior of M on CeO(2) (110) is compared with M adsorption on CeO(2)(111).  相似文献   

9.
A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-δ) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-δ) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of ~35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y~0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-δ) reaches a steady state composition with Pd in the +2 states and Ce(4+): Ce(3+) in the ratio of 0.65:0.35. This composition can be denoted as Ce(4+)(0.63)Ce(3+)(0.35)Pd(0.02)O(2-δ-y) (y~0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-δ) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.  相似文献   

10.
Zinc tin oxide (Zn(1-x)Sn(x)O(y)) has been proposed as an alternative buffer layer material to the toxic, and light narrow-bandgap CdS layer in CuIn(1-x),Ga(x)Se(2) thin film solar cell modules. In this present study, synchrotron-based soft X-ray absorption and emission spectroscopies have been employed to probe the densities of states of intrinsic ZnO, Zn(1-x)Sn(x)O(y) and SnO(x) thin films grown by atomic layer deposition. A distinct variation in the bandgap is observed with increasing Sn concentration, which has been confirmed independently by combined ellipsometry-reflectometry measurements. These data correlate directly to the open circuit potentials of corresponding solar cells, indicating that the buffer layer composition is associated with a modification of the band discontinuity at the CIGS interface. Resonantly excited emission spectra, which express the admixture of unoccupied O 2p with Zn 3d, 4s, and 4p states, reveal a strong suppression in the hybridization between the O 2p conduction band and the Zn 3d valence band with increasing Sn concentration.  相似文献   

11.
Colloidal reduced ZnO nanocrystals are potent reductants for one-electron or multielectron redox chemistry, with reduction potentials tunable via the quantum confinement effect. Other methods for tuning the redox potentials of these unusual reagents are desired. Here, we describe synthesis and characterization of a series of colloidal Zn(1-x)Mg(x)O and Zn(0.98-x)Mg(x)Mn(0.02)O nanocrystals in which Mg(2+) substitution is used to tune the nanocrystal reduction potential. The effect of Mg(2+) doping on the band-edge potentials of ZnO was investigated using electronic absorption, photoluminescence, and magnetic circular dichroism spectroscopies. Mg(2+) incorporation widens the ZnO gap by raising the conduction-band potential and lowering the valence-band potential at a ratio of 0.68:0.32. Mg(2+) substitution is far more effective than Zn(2+) removal in raising the conduction-band potential and allows better reductants to be prepared from Zn(1-x)Mg(x)O nanocrystals than can be achieved via quantum confinement of ZnO nanocrystals. The increased conduction-band potentials of Zn(1-x)Mg(x)O nanocrystals compared to ZnO nanocrystals are confirmed by demonstration of spontaneous electron transfer from n-type Zn(1-x)Mg(x)O nanocrystals to smaller (more strongly quantum confined) ZnO nanocrystals.  相似文献   

12.
The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.  相似文献   

13.
Nanocrystalline Ce(1)(-)(x)Ti(x)O(2) (0 < or = x < or = 0.4) and Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2)(-)(delta) (x = 0.15, y = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce(1)(-)(x)Ti(x)O(2) (x = 0.0-04) show complete reduction of Ti(4+) to Ti(3+) and reduction of approximately 20% Ce(4+) to Ce(3+) state compared to 8% Ce(4+) to Ce(3+) in the case of pure CeO(2) below 675 degrees C. The substitution of Ti ions in CeO(2) enhances the reducibility of CeO(2). Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) is 5 and that over Ce(0.99)Pt(0.01)O(2)(-)(delta) is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2) (x = 0.15, y = 0.01, 0.02) compared to Ce(1)(-)(x)Pt(x)O(2) (x = 0.01, 0.02). Synergistic involvement of Pt(2+)/Pt degrees and Ti(4+)/Ti(3+) redox couples in addition to Ce(4+)/Ce(3+) due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E(F) is shown to be responsible for improved redox property and higher catalytic activity.  相似文献   

14.
The structure, anisotropic magnetic, electrical and thermal transport properties for single crystals of Ca(3)Co(4-x)Cu(x)O(9) (x = 0, 0.2, 0.4, 0.6 and 0.8) have been investigated systematically. The Cu-doping with x = 0.2 at Co-site is sufficient to drive the low-temperature spin-glass state in the Ca(3)Co(4)O(9) system. The value of resistivity along ab-plane decreases monotonously with increasing x in the whole temperature range studied, and around room temperature, the in-plane resistivity of Ca(3)Co(3.2)Cu(0.8)O(9) is about 71% smaller than that of the undoped sample. The temperature region where the Fermi-liquid transport mechanism dominates becomes remarkably narrowed due to the Cu-doping while the electronic correlation in the system is enhanced. With further addition of Cu in the Ca(3)Co(4)O(9) system, the in-plane thermopower (S(ab)) increases slowly and the room-temperature S(ab) for Ca(3)Co(3.2)Cu(0.8)O(9) is about 17% larger than that of the undoped sample. As a result, the power factor along the ab-plane is enhanced by about 3.8 times compared to the undoped sample. The results are suggested to originate from the variations of carrier concentration and electronic correlation in this system via the different Cu-doping states: Cu(3+)/Cu(2+) (Cu(3+) major) into the CoO(2) layer for x ≤ 0.4, while Cu(2+)/Cu(3+) (Cu(2+) major) into the Ca(2)CoO(3) layers for x > 0.4.  相似文献   

15.
Zhang W  Zhou X  Zhong X 《Inorganic chemistry》2012,51(6):3579-3587
Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C.  相似文献   

16.
The thermal stability of a nanosized Ce(x)Zr(1-x)O2 solid solution on a silica surface and the dispersion behavior of V2O5 over Ce(x)Zr(1-x)O2/SiO2 have been investigated using XRD, Raman spectroscopy, XPS, HREM, and BET surface area techniques. Oxidative dehydrogenation of ethylbenzene to styrene was performed as a test reaction to assess the usefulness of the VOx/Ce(x)Zr(1-x)O2/SiO2 catalyst. Ce(x)Zr(1-x)O2/SiO2 (1:1:2 mol ratio based on oxides) was synthesized through a soft-chemical route from ultrahigh dilute solutions by adopting a deposition coprecipitation technique. A theoretical monolayer equivalent to 10 wt % V2O5 was impregnated over the calcined Ce(x)Zr(1-x)O2/SiO2 sample (773 K) by an aqueous wet impregnation technique. The prepared V2O5/Ce(x)Zr(1-x)O2/SiO2 sample was subjected to thermal treatments from 773 to 1073 K. The XRD measurements indicate the presence of cubic Ce0.75Zr0.25O2 in the case of Ce(x)Zr(1-x)O2/SiO2, while cubic Ce0.5Zr0.5O2 and tetragonal Ce0.16Zr0.84O2 in the case of V2O5/Ce(x)Zr(1-x)O2/SiO2 when calcined at various temperatures. Dispersed vanadium oxide induces more incorporation of zirconium into the ceria lattice, thereby decreasing its lattice size and also accelerating the crystallization of Ce-Zr-O solid solutions at higher calcination temperatures. Further, it interacts selectively with the ceria portion of the composite oxide to form CeVO4. The RS measurements provide good evidence about the dispersed form of vanadium oxide and the CeVO4 compound. The HREM studies show the presence of small Ce-Zr-oxide particles of approximately 5 nm size over the surface of amorphous silica and corroborate with the results obtained from other techniques. The catalytic activity studies reveal the ability of vanadium oxide supported on Ce(x)Zr(1-x)O2/SiO2 to efficiently catalyze the ODH of ethylbenzene at normal atmospheric pressure. The remarkable ability of Ce(x)Zr(1-x)O2 to prevent the deactivation of supported vanadium oxide leading to stable activity in the time-on-stream experiments and high selectivity to styrene are other important observations.  相似文献   

17.
We prepared BiOCl(1-x)Br(x) (x=0-1) solid solutions and characterized their structures, morphologies, and photocatalytic properties by X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, Raman spectroscopy, photocurrent and photocatalytic activity measurements and also by density functional theory calculations for BiOCl, BiOBr, BiOCl(0.5)Br(0.5). Under visible-light irradiation BiOCl(1-x)Br(x) exhibits a stronger photocatalytic activity than do BiOCl and BiOBr, with the activity reaching the maximum at x=0.5 and decreasing gradually as x is increased toward 1 or decreased toward 0. This trend is closely mimicked by the photogenerated current of BiOCl(1-x)Br(x) , indicating that the enhanced photocatalytic activity of BiOCl(1-x)Br(x) with respect to those of BiOCl and BiOBr originates from the trapping of photogenerated carriers. Our electronic structure calculations for BiOCl(0.5)Br(0.5) with the anion (O(2-), Cl(-), Br(-)) and cation (Bi(3+)) vacancies suggest that the trapping of photogenerated carriers is caused most likely by Bi(3+) cation vacancies, which generate hole states above the conduction band maximum.  相似文献   

18.
(CuIn)(x)Zn2(1-x)S2 solid solutions between a ZnS photocatalyst with a wide band gap and CuInS(2) with a narrow band gap showed photocatalytic activities for H(2) evolution from aqueous solutions containing sacrificial reagents SO(3)(2-) and S(2-) under visible-light irradiation (lambda >/= 420 nm). Pt (0.5 wt %)-loaded (CuIn)(0.09)Zn(1.82)S(2) with a 2.3-eV band gap showed the highest activity for H(2) evolution, and the apparent quantum yield at 420 nm amounted to 12.5%. H(2) evolved at a rate of 1.5 L h(-1) m(-2) under irradiation with a solar simulator (AM 1.5). Diffuse reflection and photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side, as the ratio of CuInS(2) to ZnS increased in the solid solutions. The photocatalytic H(2) evolution depended on the composition as well as the photophysical properties. DFT calculations suggested that the visible-light response should be derived from the contribution of Cu 3d and S 3p orbitals to the valence band and that of In 5s5p and Zn 4s4p orbitals to the conduction band, respectively. The contribution of these orbitals to the energy bands affected the photophysical and photocatalytic properties.  相似文献   

19.
Nguyen TD  Dinh CT  Do TO 《Inorganic chemistry》2011,50(4):1309-1320
Undoped and cerium doped LaCO(3)OH annular-shaped nanoarchitectures with high specific surface area have been fabricated via the thermolysis of Ce(x)La(1-x)(oleate)(3) (x = 0-20 mol %) complexes in a toluene-water system containing tert-butylamine/oleylamine. The products exhibit 400 nm-sized monodisperse annular-shaped nanoarchitectures, which are constituted of 3-5 nm-sized primary particles. A possible mechanism of the reaction of Ce(x)La(1-x)(oleate)(3) and tert-butylamine for the formation of annular-shaped Ce(x)La(1-x)CO(3)OH nanoarchitectures is proposed. The thermal conversion of Ce(x)La(1-x)CO(3)OH to Ce(x)La(1-x)(CO(3))O(2) at 600 °C, to Ce(x)La(1-x)(OH)(3) at 800 °C, final to (Ce(x)La(1-x))(2)O(3-δ) at 900 °C were employed, while the original morphology was essentially unchanged. The dopant concentration was varied from 5 to 20 of cerium ions per LaCO(3)OH nanoparticle. The X-ray diffraction (XRD) results reveal that the cerium dopant could enter easily into the LaCO(3)OH structural lattice, whereas copper could unlikely enter into their lattice because of their large ionic radius difference. The cerium oxidation state was controlled by changing doping concentration. The X-ray photoelectron spectroscopy (XPS) results reveal that only one Ce(3+) oxidation state is in the as-synthesized Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, whereas both 3+ and 4+ ones coexisted in 20 mol % Ce:LaCO(3)OH structure. Remarkable luminescence emission intensity enhancement of 1.5-9.0 times were observed for Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, after doping with an undoped LaCO(3)OH.  相似文献   

20.
The optical band positions and EPR g factors g(i) (i = x, y, z) of Cu(H(2)O)(6)(2+) clusters in pure Tutton salts M(2)Cu(SO(4))(2)·6H(2)O (M = NH(4), Rb) are calculated from the complete diagonalization (of energy matrix) method based on the cluster approach. In the calculation, the superposition model with the structural data is used to obtain the crystal-field parameters. The calculated results are in reasonable agreement with the experimental values, suggesting that the complete diagonalization method and superposition model are effective in the studies of optical and EPR data. The g factors g(i) of Cu(H(2)O)(6)(2+) clusters in Cu(2+)-doped isomorphous diamagnetic Tutton salts M(2)Zn(SO(4))(2)·6H(2)O are also studied from the same method. It is found that the approximately tetragonally compressed Zn(H(2)O)(6)(2+) octahedra in the host crystals change to the approximately tetragonally elongated Cu(H(2)O)(6)(2+) octahedra in the impurity centers. The causes concerning the Jahn-Teller effect are discussed. It appears that in some cases the octahedral environment of an impurity M(I) in crystals differs from that of the replaced host ion, but is close to the one in the isomorphous pure crystals where M(I) is the host ion rather than the impurity ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号