首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

2.
Oxidation of the electron-rich (E(1/2) = -175 vs Ag/AgCl) ethanedithiolato complex Fe2(S2C2H4)(CO)2(dppv)2 (1) under a CO atmosphere yielded [Fe2(S2C2H4)(mu-CO)(CO)2(dppv)2](+) ([1(CO)](+)), a model for the H(ox)(CO) state of the [FeFe]-hydrogenases. This complex exists as two isomers: a kinetically favored unsymmetrical derivative, unsym-[1(CO)](+), and a thermodynamically favored isomer, sym-[1(CO)](+), wherein both diphosphines span apical and basal sites. Crystallographic characterization of sym-[1(CO)](+) confirmed a C2-symmetric structure with a bridging CO ligand and an elongated Fe-Fe bond of 2.7012(14) A, as predicted previously. Oxidation of sym-[1(CO)](+) and unsym-[1(CO)](+) again by 1e(-) oxidation afforded the respective diamagnetic diferrous derivatives where the relative stabilities of the sym and unsym isomers are reversed. DFT calculations indicate that the stabilities of sym and unsym isomers are affected differently by the oxidation state of the diiron unit: the mutually trans CO ligands in the sym isomer are more destabilizing in the mixed-valence state than in the diferrous state. EPR analysis of mixed-valence complexes revealed that, for [1](+), the unpaired spin is localized on a single iron center, whereas for unsym/sym-[1(CO)](+), the unpaired spin was delocalized over both iron centers, as indicated by the magnitude of the hyperfine coupling to the phosphine ligands trans to the Fe-Fe vector. Oxidation of 1 by 2 equiv of acetylferrocenium afforded the dication [1](2+), which, on the basis of low-temperature IR spectrum, is structurally similar to [1](+). Treatment of [1](2+) with CO gives unsym-[1(CO)](2+).  相似文献   

3.
[Mn(CO)(4){S(2)CNMe(CH(2)CO(2)H)}], 1, is shown to be a CO releasing molecule providing at least three moles CO per mole of compound. The mechanism of CO loss is dissociative and reversible and was investigated using Gaussian 09 calculations. The reversible binding of CO results in a relatively stable solution of the compound, while in the presence of a CO receptor or a ligand to prevent the rebinding of CO, the CO is lost rapidly. The X-ray structure was determined.  相似文献   

4.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

5.
The difluorcarbene complex [Fe2(CO)8(mu-CF2)] (2) reacts with AsMe3 under CO substitution to give the mu-CF2 containing complexes [Fe2(CO)6(AsMe3)2(mu-CF2)] (4) and [Fe2(CO)5(AsMe3)3(mu-CF2)] (5) which have an [Fe2(CO)9]-like structure as shown by X-ray analyses. In the solid state, 4 forms two isomers, 4a and 4b, in a 3 to 1 ratio, which differ in the position of the mu-CF(2) ligand; 4a has a local C(2) axis and 4b has C1 symmetry. The Fe-Fe distances in 4 and 5 are 2.47 A and are the shortest ones found in [Fe2(CO)9]-like compounds. Efforts were also undertaken to replace one or more CO groups in 2 by other ligands, such as N (bpy, phen, pzy, etc.) or P donors (dppe, dppm). With dppm, only the CF(2) free complex, [Fe2(CO)4(mu-Ph2PCH2PPh2)2(mu-CO)] (6), could be detected and characterized by X-ray analysis. Most of the reactions resulted in the formation of red-brown materials which were insoluble in the usual solvents and which could not be characterized. The use of CH2Cl2 during the attempts to crystallize a product from the reaction of 2 and phen gave [Fe(phen)3]Cl2 (7) in low yields. For 4 and 5, the electronic structures were analyzed using the atoms in molecules (AIM) theory. No electron density was found between the two iron atoms, and the short contacts can be interpreted in terms of a pi-interaction.  相似文献   

6.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

7.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

8.
Wang N  Wang M  Liu T  Li P  Zhang T  Darensbourg MY  Sun L 《Inorganic chemistry》2008,47(15):6948-6955
Selective synthetic routes to isomeric diiron dithiolate complexes containing the (EtO) 2PN(Me)P(OEt) 2 (PNP) ligand in an unsymmetrical chelating role, for example, (mu-pdt)[Fe(CO) 3][Fe(CO)(kappa (2)-PNP)] ( 3) and as a symmetrically bridging ligand in (mu-pdt)(mu-PNP)[Fe(CO) 2] 2 ( 4), have been developed. 3 was converted to 4 in 75% yield after extensive reflux in toluene. The reactions of 3 with PMe 3 and P(OEt) 3 afforded bis-monodentate P-donor complexes (mu-pdt)[Fe(CO) 2PR 3][Fe(CO) 2(PNP)] (PR 3 = PMe 3, 5; P(OEt) 3, 7), respectively, which are formed via an associative PMe 3 coordination reaction followed by an intramolecular CO-migration process from the Fe(CO) 3 to the Fe(CO)(PNP) unit with concomitant opening of the Fe-PNP chelate ring. The PNP-monodentate complexes 5 and 7 were converted to a trisubstituted diiron complex (mu-pdt)(mu-PNP)[Fe(CO)PR 3][Fe(CO) 2] (PR 3 = PMe 3, 6; P(OEt) 3, 8) on release of 1 equiv CO when refluxing in toluene. Variable-temperature (31)P NMR spectra show that trisubstituted diiron complexes each exist as two configuration isomers in solution. All diiron dithiolate complexes obtained were characterized by MS, IR, NMR spectroscopy, elemental analysis, and X-ray diffraction studies.  相似文献   

9.
Reactions of silicon atoms and small clusters with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. In addition to the previously reported SiCO monocarbonyl, Si(2)(CO)(2) and Si(n)CO (n=2-5) carbonyl molecules were formed spontaneously on annealing and were characterized on the basis of isotopic substitution and theoretical calculations. It was found that Si(2)CO, Si(3)CO, and Si(5)CO are bridge-bonded carbonyl compounds, whereas Si(4)CO is a terminal-bonded carbonyl molecule. The Si(2)(CO)(2) and Si(3)CO molecules photochemically rearranged to the more stable c-Si(2)(mu-O)(mu-CCO) and c-Si(2)(mu-O) (mu-CSi) isomers where Si(2) is inserted into the CO triple bond.  相似文献   

10.
Oxidative addition of the silanes R(3)SiH (R(3)= Ph(3), Et(3), EtMe(2)) to the unsaturated cluster [Os(3)(micro-H)[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(8)] leads to the saturated clusters [Os(3)(micro-H)(SiR(3))(CO)(9)(micro-dppm)](SiR(3)= SiPh(3) 1, SiEt(3) 2 and SiEtMe(2)3) and the unsaturated clusters [Os(3)(micro -H)(2)(SiR(3))[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(7)](SiR(3)= SiPh(3) 4, SiEt(3) 5 and SiEtMe(2)6). Structures are based on spectroscopic evidence and a XRD structure of [Os(3)(micro-H)(SiPh(3))(CO)(9)(micro-dppm)] 1 in which all non-CO ligands are coordinated equatorially and the hydride and the silyl groups are mutually cis. From variable-temperature (1)H NMR spectra of the SiEt(3) compound 2, exchange of the P nuclei is clearly apparent. Simultaneous migrations of the SiEt(3) group and of the hydride from one Os-Os edge to another generate a time-averaged mirror plane in the molecule. VT (1)H NMR spectra of the somewhat less bulky compound [Os(3)(micro-H)(SiMe(2)Et)(CO)(9)(micro-dppm)] 3 have been analysed. Two isomers 3a and 3b are observed with the hydride ligand located on different Os-Os edges. Synchronous migration of the hydride and SiMe(2)Et groups is faster than the observed interconversion of isomers which occurs by hydride migration alone. The synchronous motion of H and SiR(3)only occurs when these ligands are mutually cis as in the major isomer 3a and we propose that this process requires the formation of a transient silane complex of the type [Os(3)(eta(2)-HSiR(3))(CO)(9)(micro-dppm)]. Turnstile rotation within an Os(CO)(3)(eta(2)-HSiR(3)) group leads to the observed exchange within the major isomer 3a without exchange with the minor isomer. This process is not observed for the minor isomer 3b because the hydride and the silyl group are mutually trans. Protonation to give [Os(3)(micro-H)(2)(SiR(3))(CO)(9)(micro-dppm)](+) totally suppresses the dynamic behaviour because there are no edge vacancies.  相似文献   

11.
The first examples of carbonyl heterocubane-type clusters, [Fe(4)(μ(3)-Q)(2)(μ(3)-AsMe)(2)(CO)(12)] (2, Q = Se (a), Te (b)), which simultaneously contain elements of group 15 and 16, were obtained by thermolysis of [Fe(3)(μ(3)-Q)(μ(3)-AsMe)(CO)(9)] (1) in acetonitrile. The clusters 2 possess a cubic Fe(4)Q(2)As(2) core with alternating Fe and Q/As atoms. The coordination environment of the Fe atoms is close to octahedral, and those of Q or As atoms are tetrahedral, which determines the distorted cubic cluster core geometry. The second main products of thermolysis are the clusters [Fe(6)(μ(3)-Q)(μ(4)-Q)(μ(4)-AsMe)(2)(CO)(12)] (3a,b), whose core contains double the elemental composition of the initial cluster 1. In the case of the Se-containing cluster two other minor products [Fe(4)(μ(4)-Se)(μ(4)-SeAsMe)(CO)(12)] (4) and [Fe(3)(μ(3)-AsMe)(2)(CO)(9)] (5) are formed. Based on the structures and properties of the products, a reaction route for the conversion of 1 into 2 is proposed, which includes the associative formation of the clusters 3 as intermediates, unlike the dissociative pathways previously known for the transformations of similar clusters of the type [Fe(3)Q(2)(CO)(9)].  相似文献   

12.
The addition of the strongly pi-bonding ligands CO or tert-butyl isocyanide to the low-spin five-coordinate iron(II) nitrite species [Fe(TpivPP)(NO2)]- (TpivPP = picket fence porphyrin) gives two new six-coordinate species [Fe(TpivPP)(NO2)(CO)]- and [Fe(TpivPP)(NO2)(t-BuNC)]-. These species have been characterized by single-crystal structure determinations and by UV-vis, IR, and M?ssbauer spectroscopies. All evidence shows that in the mixed-ligand iron(II) porphyrin species, [Fe(TpivPP)(NO2)(CO)]-, the two trans, pi-accepting ligands CO and nitrite compete for pi density. The CO ligand however dominates the bonding. The Fe-N(NO2) bond lengths for the two independent anions in the unit cell at 2.006(4) and 2.009(4) A are lengthened compared to other nitrite species with either no trans ligands or non-pi-accepting trans ligands to nitrite. The Fe-C(CO) bond lengths are 1.782(4) A and 1.789(5) A for the two anions. The two Fe-C-O angles at 175.5(4) and 177.5(4) degrees are essentially linear in both anions. The quadrupole splitting for [Fe(TpivPP)(NO2)(CO)]- was determined to be 0.32 mm/s, and the isomer shift was 0.18 mm/s at room temperature in zero applied field. Both of the M?ssbauer parameters are much smaller than those found for six-coordinate low-spin iron(II) porphyrinates with neutral nitrogen-donating ligands as well as iron(II) nitro complexes. However, the M?ssbauer parameters are typical of other six-coordinate CO porphyrinates signifying that CO is the more dominant ligand. The CO stretching frequency of 1974 cm(-1) is shifted only slightly to higher energy compared to six-coordinate CO complexes with neutral nitrogen-donor ligands trans to CO. Crystal data for [K(222)][Fe(TpivPP)(NO2)(CO)].1/2C6H5Cl: monoclinic, space group P2(1)/c, Z = 8, a = 33.548(6) A, b = 18.8172(15) A, c = 27.187(2) A, beta = 95.240(7) degrees, V = 17091(4) A3.  相似文献   

13.
Toluene solutions of C(60) react upon UV irradiation with Fe(2)S(2)(CO)(6) to give C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-6. C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-3 have been isolated and characterized. Crystallographic studies of C(60)S(2)Fe(2)(CO)(6) show that the S-S bond of the Fe(2) reagent is cleaved to give a dithiolate with idealized C(2)(v)() symmetry. The addition occurred at a 6,6 fusion, and the metrical details show that the Fe(2) portion of the molecule resembles C(2)H(4)S(2)Fe(2)(CO)(6). IR spectroscopic measurements indicate that the Fe(2)(CO)(6) subunits in the multiple-addition species (n > 1) interact only weakly. UV-vis spectra of the adducts show a shift to shorter wavelength with addition of each S(2)Fe(2)(CO)(6) unit. Photoaddition of the phosphine complex Fe(2)S(2)(CO)(5)(PPh(3)) to C(60) gave C(60)[S(2)Fe(2)(CO)(5)(PPh(3))](n)(), where n = 1-3. (31)P{(1)H} NMR studies show that the double adduct consists of multiple isomers. Photoaddition of Fe(2)S(2)(CO)(6) to C(70) gave a series of adducts C(70)[S(2)Fe(2)(CO)(6)](n)() where n = 1-4. HPLC analyses show one, four, and three isomers for the adducts, respectively.  相似文献   

14.
Proposed electrocatalytic proton reduction intermediates of hydrogenase mimics were synthesized, observed, and studied computationally. A new mechanism for H(2) generation appears to involve Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3), the dianions {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)Fe(CO)(2)](2-) (3(2-)), the bridging hydride {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(μ-CO)(μ-H)Fe(CO)(2)]}(-), 3H(-)(bridging), and the terminal hydride 3H(-)(term-stag), {[1,2-S(2)C(6)H(4)][HFe(CO)(3)Fe(CO)(3)]}(-), as intermediates. The dimeric sodium derivative of 3(2-), {[Na(2)(THF)(OEt(2))(3)][3(2-)]}(2) (4) was isolated from reaction of Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3) with excess sodium and was characterized by X-ray crystallography. It possesses a bridging CO and an unsymmetrically bridging dithiolate ligand. Complex 4 reacts with 4 equiv. of triflic or benzoic acid (2 equiv. per Fe center) to generate H(2) and 3 in 75% and 60% yields, respectively. Reaction of 4 with 2 equiv. of benzoic acid generated two hydrides in a 1.7 : 1 ratio (by (1)H NMR spectroscopy). Chemical shift calculations on geometry optimized structures of possible hydride isomers strongly suggest that the main product, 3H(-)(bridging), possesses a bridging hydride ligand, while the minor product is a terminal hydride, 3H(-)(term-stag). Computational studies support a catalytic proton reduction mechanism involving a two-electron reduction of 3 that severs an Fe-S bond to generate a dangling thiolate and an electron rich Fe center. The latter iron center is the initial site of protonation, and this event is followed by protonation at the dangling thiolate to give the thiol thiolate [Fe(2)H(CO)(6)(1,2-SHSC(6)H(4))]. This species then undergoes an intramolecular acid-base reaction to form a dihydrogen complex that loses H(2) and regenerates 3.  相似文献   

15.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

16.
The heterometallic complex (NH(3))(2)YbFe(CO)(4) was prepared from the reduction of Fe(3)(CO)(12) by Yb in liquid ammonia. Ammonia was displaced from (NH(3))(2)YbFe(CO)(4) by acetonitrile in acetonitrile solution, and the crystalline compounds {[(CH(3)CN)(3)YbFe(CO)(4))](2).CH(3)CN}(infinity) and [(CH(3)CN)(3)YbFe(CO)(4)](infinity) were obtained. An earlier X-ray study of {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity) showed that it is a ladder polymer with direct Yb-Fe bonds. In the present study, an X-ray crystal structure analysis also showed that [(CH(3)CN)(3)YbFe(CO)(4)](infinity) is a sheetlike array with direct Yb-Fe bonds. Crystal data for {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity): monoclinic space group P2(1)/c, a = 21.515(8) ?, b = 7.838(2) ?, c = 19.866(6) ?, beta = 105.47(2) degrees, Z = 4. Crystal data for [(CH(3)CN)(3)YbFe(CO)(4)](infinity): monoclinic space group P2(1)/n, a = 8.364(3) ?, b = 9.605(5) ?, c = 17.240(6) ?, beta = 92.22(3) degrees, Z = 4. Electrical conductivity measurements in acetonitrile show that these acetonitrile complexes are partially dissociated into ionic species. IR and NMR spectra of the solutions reveal the presence of [HFe(CO)(4)](-). However, upon recrystallization, the acetonitrile complexes show no evidence for the presence of [HFe(CO)(4)](-) on the basis of their IR spectra. The solid state MAS (2)H NMR spectra of deuterated acetonitrile complexes give no evidence for [(2)HFe(CO)(4)](-). It appears that rupture of the Yb-Fe bond could occur in solution to generate the ion pair [L(n)Yb](2+)[Fe(CO)(4)](2-), but then the highly basic [Fe(CO)(4)](2-) anion could abstract a proton from a coordinated acetonitrile ligand to form [HFe(CO)(4)](-). However, upon crystallization, the proton could be transferred back to the ligand, which results in the neutral polymeric species.  相似文献   

17.
The binuclear complex with composition [Cp(CO)2 MnC(CO)CHPh]Fe(CO)3 is obtained by interaction of CpMn(CCHPh)(CO)2 with Fe2C0)9. An X-ray study of this complex has shown that besides three carbonyl groups the iron atom is covalently bonded to four atoms, viz. the carbon of a phenylmethylene group, the carbon of a bridging CO group, the manganese atom and the central carbon of the organomanganese ligand lying just above iron. It seems to be the first example of a heteroatomic analogue of trimethylenemethane complexes.  相似文献   

18.
This report describes routes to iron dithiolato carbonyls that do not require preformed iron carbonyls. The reaction of FeCl 2, Zn, and Q 2S 2C n H 2 n (Q (+) = Na (+), Et 3NH (+)) under an atmosphere of CO affords Fe 2(S 2C n H 2 n )(CO) 6 ( n = 2, 3) in yields >70%. The method was employed to prepare Fe 2(S 2C 2H 4)( (13)CO) 6. Treatment of these carbonylated mixtures with tertiary phosphines, instead of Zn, gave the ferrous species Fe 3(S 2C 3H 6) 3(CO) 4(PR 3) 2, for R = Et, Bu, and Ph. Like the related complex Fe 3(SPh) 6(CO) 6, these compounds consist of a linear arrangement of three conjoined face-shared octahedral centers. Omitting the phosphine but with an excess of dithiolate, we obtained the related mixed-valence triiron species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (-). The highly reducing all-ferrous species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (2-) is implicated as an intermediate in this transformation. Reactive forms of iron, prepared by the method of Rieke, also combined with dithiols under a CO atmosphere to give Fe 2(S 2C n H 2 n )(CO) 6 in modest yields under mild conditions. Studies on the order of addition indicate that ferrous thiolates are formed prior to the onset of carbonylation. Crystallographic characterization demonstrated that the complexes Fe 3(S 2C 3H 6) 3(CO) 4(PEt 3) 2 and PBnPh 3[Fe 3(S 2C 3H 6) 4(CO) 4] feature high-spin ferrous and low-spin ferric as the central metal, respectively.  相似文献   

19.
The photochemical reaction of Ru(CO)(3)(dppe) and Fe(CO)(3)(dppe)(dppe = Ph(2)PCH(2)CH(2)PPh(2)) with parahydrogen has been studied by in situ-photochemistry resulting in NMR spectra of Ru(CO)(2)(dppe)(H)(2) that show significant enhancement of the hydride resonances while normal signals are seen in Fe(CO)(2)(dppe)(H)(2). This effect is associated with a singlet electronic state for the key intermediate Ru(CO)(2)(dppe) while Fe(CO)(2)(dppe) is a triplet. DFT calculations reveal electronic ground states consistent with this picture. The fluxionality of Ru(CO)(2)(dppe)(H)(2) and Fe(CO)(2)(dppe)(H)(2) has been examined by NMR spectroscopy and rationalised by theoretical methods which show that two pathways for ligand exchange exist. In the first, the phosphorus and carbonyl centres interchange positions while the two hydride ligands are unaffected. A second pathway involving interchange of all three ligand sets was found at slightly higher energy. The H-H distances in the transition states are consistent with metal-bonded dihydrogen ligands. However, no local minimum (intermediate) was found along the rearrangement pathways.  相似文献   

20.
The new iron carbonyl cyanide trans-[Fe(CN)(2)(CO)(3)](2)(-), [2](2)(-), forms in high yield via photosubstitution of Fe(CO)(5) with 2 equiv of Et(4)NCN. Protonation of [2](2)(-) generated [HFe(CN)(2)(CO)(3)](-), [2H](-), the first H-Fe-CN-CO species. Further protonation gives dihydrogen. This simple system provides insights into hydrogen evolution by the hydrogenase enzymes, which also feature H-Fe-CN-CO centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号