首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the absence of the axiom of choice four versions of compactness (A-, B-, C-, and D-compactness) are investigated. Typical results:
  1. C-compact spaces form the epireflective hull in Haus of A-compact completely regular spaces.
  2. Equivalent are:
  3. the axiom of choice,
  4. A-compactness = D-compactness,
  5. B-compactness = D-compactness,
  6. C-compactness = D-compactness and complete regularity,
  7. products of spaces with finite topologies are A-compact,
  8. products of A-compact spaces are A-compact,
  9. products of D-compact spaces are D-compact,
  10. powers X k of 2-point discrete spaces are D-compact,
  11. finite products of D-compact spaces are D-compact,
  12. finite coproducts of D-compact spaces are D-compact,
  13. D-compact Hausdorff spaces form an epireflective subcategory of Haus,
  14. spaces with finite topologies are D-compact.
  1. Equivalent are:
  2. the Boolean prime ideal theorem,
  3. A-compactness = B-compactness,
  4. A-compactness and complete regularity = C-compactness,
  5. products of spaces with finite underlying sets are A-compact,
  6. products of A-compact Hausdorff spaces are A-compact,
  7. powers X k of 2-point discrete spaces are A-compact,
  8. A-compact Hausdorff spaces form an epireflective subcategory of Haus.
  1. Equivalent are:
  2. either the axiom of choice holds or every ultrafilter is fixed,
  3. products of B-compact spaces are B-compact.
  1. Equivalent are:
  2. Dedekind-finite sets are finite,
  3. every set carries some D-compact Hausdorff topology,
  4. every T 1-space has a T 1-D-compactification,
  5. Alexandroff-compactifications of discrete spaces and D-compact.
  相似文献   

2.
Given a topological space X, Jenkins and McKnight have shown how ideals of the ring C(X) are partitioned into equivalence classes — called coherence classes — defined by declaring ideals to be equivalent if their pure parts are identical. In this paper we consider a similar partitioning of the lattice of ideals of a normal bounded distributive lattice. We then apply results obtained herein to augment some of those of Jenkins and McKnight. In particular, for Tychonoff spaces, new results include the following:
  1. all members of any coherence class have the same annihilator
  2. every ideal is alone in its coherence class if and only if the space is a P-space.
  相似文献   

3.
The author has shown previously how to associate a completely 0-simple semigroup with a connected bipartite graph containing labelled edges and how to describe the regular principal factors in the free objects in the Rees-Sushkevich varieties RS n generated by all completely 0-simple semigroups over groups from the Burnside variety G n of groups of exponent dividing a positive integer n by employing this graphical construction. Here we consider the analogous problem for varieties containing the variety B 2 , generated by the five element Brandt semigroup B 2, and contained in the variety NB 2 G n where NB 2 is the variety generated by all left and right zero semigroups together with B 2. The interval [NB 2 ,NB 2 G n ] is of particular interest as it is an important interval, consisting entirely of varieties generated by completely 0-simple semigroups, in the lattice of subvarieties of RS n .  相似文献   

4.
The notion of deformations of germs of k-analytic mappings generalizes the one of deformations of germs of k-analytic spaces. Using algebraic terms, we prove:
  1. The morphism f: A→B of analytic algebras is rigid, iff it is infinitesimally rigid. Moreover, this is equivalent to ExA (B,B)=0. This theorem generalizes a result of SCHUSTER [11].
  2. Let A be a regular analytic algebra. Then f is rigid iff there exists a rigid analytic algebra Bo such that f is equivalent to the canonic injection A→A?Bo.
  3. If f is “almost everywhere” rigid or smooth, then the injection Ext B l B|A, Bn)→ExA(B, Bn) is an isomorphism.
  相似文献   

5.
In this paper, we study the structure of Turing degrees below 0′ in the theory that is a fragment of Peano arithmetic without Σ1 induction, with special focus on proper d-r.e. degrees and non-r.e. degrees. We prove:
  1. P ? + BΣ1 + Exp ? There is a proper d-r.e. degree.
  2. P ? +BΣ1+ Exp ? IΣ1 ? There is a proper d-r.e. degree below 0′.
  3. P ? + BΣ1 + Exp ? There is a non-r.e. degree below 0′.
  相似文献   

6.
7.
Установлено, что для и нвариантных относит ельно сдвига банаховых про странствВ (классов) измеримых фу нкций на локально ком пактной группе, удовлетворяю щих некоторым дополнительным усло виям, справедлив след ующий критерий компактнос ти. Замкнутое подмножествоМ?В яв ляется компактным вВ тогда и только тогда, к огда оно удовлетворя ет условиям:
  1. М ограничено вВ;
  2. для каждого ?>0 сущест вуетkε?(G) такое, что ∥k*f-f∥BfεМ;
  3. для каждого ?0 существ уетh??(G) такое, что ∥hf - f ∥BfεМ.
  相似文献   

8.
We consider a convex setB inR n described as the intersection of halfspacesa i T xb i (i ∈ I) and a set of linear objective functionsf j =c j T x (j ∈ J). The index setsI andJ are allowed to be infinite in one of the algorithms. We give the definition of theefficient points ofB (also called functionally efficient or Pareto optimal points) and present the mathematical theory which is needed in the algorithms. In the last section of the paper, we present algorithms that solve the following problems:
  1. To decide if a given point inB is efficient.
  2. To find an efficient point inB.
  3. To decide if a given efficient point is the only one that exists, and if not, find other ones.
  4. The solutions of the above problems do not depend on the absolute magnitudes of thec j. They only describe the relative importance of the different activitiesx i. Therefore we also consider $$\begin{gathered} \max G^T x \hfill \\ x efficient \hfill \\ \end{gathered} $$ for some vectorG.
  相似文献   

9.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

10.
A module is called distributive (is said to be a chain module) if the lattice of all its submodules is distributive (is a chain). Let a ringA be a finitely generated module over its unitary central subringR. We prove the equivalence of the following conditions:
  1. A is a right or left distributive semiprime ring;
  2. for any maximal idealM of a subringR central inA, the ring of quotientsA M is a finite direct product of semihereditary Bézout domains whose quotient rings by the Jacobson radicals are finite direct products of skew fields;
  3. all right ideals and all left ideals of the ringA are flat (right and left) modules over the ringA, andA is a distributive ring, without nonzero nilpotent elements, all of whose quotient rings by prime ideals are semihereditary orders in skew fields.
  相似文献   

11.
In this paper, we definen-segmentwise metric spaces and then we prove the following results:
  1. (i)|Let (X, d) be ann-segmentwise metric space. ThenX n has the fixed point property with respect to uniformly continuous bounded functions if and only if, for any continuous functionF: C *(X) → C*(X) and for anyn-tuple of distinct points x1, x2, ?, xnX, there exists anhC *(X) such that $$F(h)(x_1 ) = h(x_1 ),i = 1,2,...,n;$$ whereC *(X) has either the uniform topology or the subspace product (Tychonoff) topology \((C^ * (X) \subseteq X^X )\) .
  2. LetX i (i = 1, 2, ?) be countably compact Hausdorff spaces such thatX 1 × ? × Xn has the fixed point property for allnN Then the product spaceX 1 × X2 × ? has the fixed point property. We shall also discuss several problems in the Fixed Point Theory and give examples if necessary. Among these examples, we have:
  3. There exists a connected metric spaceX which can be decomposed as a disjoint union of a closed setA and an open setB such thatA andB have the fixed point property andX does not have.
  4. There exists a locally compact metrizable spaceX which has the fixed point property but its one-point compactificationX + does not have the fixed point property.
Other relevant results and examples will be presented in this paper.  相似文献   

12.
Suppose K is a skew field. Let K m×n denote the set of all m×n matrices over K. In this paper, we give necessary and sufficient conditions for the existence and explicit representations of the group inverses of the block matrices in the following three cases, respectively:
  1. $\mathrm{rank}(S)=\mathrm{rank}(B^{\pi}A)$ ;
  2. $\mathrm{rank}(S)=\mathrm{rank}(AB^{\pi})$ ;
  3. $\mathrm{rank}(S)=\mathrm{rank}(B^{\pi}A)=\mathrm{rank}(AB^{\pi})$ ,
where A,B,C??K n×n , B # exists, R(B)=R(C), N(B)=N(C) and S=B ?? AB ?? . The paper??s conclusions generalized some related results of Zhao and Bu (Electron. J. Linear Algebra 21:63?C75, 2010).  相似文献   

13.
Let $\mathcal{K}$ be the family of graphs on ω1 without cliques or independent subsets of sizew 1. We prove that
  1. it is consistent with CH that everyGε $\mathcal{K}$ has 2ω many pairwise non-isomorphic subgraphs,
  2. the following proposition holds in L: (*)there is a Gε $\mathcal{K}$ such that for each partition (A, B) of ω1 either G?G[A] orG?G[B],
  3. the failure of (*) is consistent with ZFC.
  相似文献   

14.
We prove the following: for every sequence {Fv}, Fv ? 0, Fv > 0 there exists a functionf such that
  1. En(f)?Fn (n=0, 1, 2, ...) and
  2. Akn?k? v=1 n vk?1 Fv?1k (f, n?1) (n=1, 2, ...).
  相似文献   

15.
In this paper some basis properties are proved for the series with respect to the Franklin system, which are analogous to those of the series with respect to the Haar system. In particular, the following statements hold:
  1. The Franklin series \(\mathop \Sigma \limits_{n = 0}^\infty a_n f_n (x)\) converges a.e. onE if and only if \(\mathop \Sigma \limits_{n = 0}^\infty a_n^2 f_n^2 (x)< + \infty \) a.e. onE;
  2. If the series \(\mathop \Sigma \limits_{n = 0}^\infty a_n f_n (x)\) , with coefficients ¦a n ¦↓0, converges on a set of positive measure, then it is the Fourier-Franklin series of some function from \(\bigcap\limits_{p< \infty } {L_p } \) ;
  3. The absolute convergence at a point for Fourier—Franklin series is a local property;
  4. If an integrable function (fx) has a discontinuity of the first kind atx=x 0, then its Fourier-Franklin series diverges atx=x 0.
  相似文献   

16.
Рассматриваются слу чайная величина \(\mathfrak{X} = (X_n (\omega ))\) , удовлетворяющая усл овиюE(X n 4 )≦M, и соответствующ ий случайный степенн ой ряд \(f_x (z;\omega ) = \mathop \sum \limits_{n = 0}^\infty a_n X_n (\omega )z^n\) . Устанавливаются тео ремы непродолжимост и почти наверное:
  1. дляf x при условиях с лабой мультипликати вности на \(\mathfrak{X}\) ,
  2. для \(f_{\tilde x}\) , где \(\mathop \mathfrak{X}\limits^ \sim = (\mathop X\limits^ \sim _n )\) есть подп оследовательность в \(\mathfrak{X}\) ,
  3. для по крайней мере од ного из рядовf x′ илиf x″ , где \(\mathfrak{X}'\) и \(\mathfrak{X}''\) — некоторые п ерестановки \(\mathfrak{X}\) , выбираемые универс ально, т. е. независимо от коэффициентовa n .
  相似文献   

17.
We consider projective planes Π of ordern with abelian collineation group Γ of ordern(n?1) which is generated by (A, m)-elations and (B, l)-homologies wherem =AB andA εl. We prove
  1. Ifn is even thenn=2e and the Sylow 2-subgroup of Γ is elementary abelian.
  2. Ifn is odd then the Sylow 2-subgroup of Γ is cyclic.
  3. Ifn is a prime then Π is Desarguesian.
  4. Ifn is not a square thenn is a prime power.
  相似文献   

18.
The existence and the uniqueness (with respect to a filtration-equivalence) of a vector flowX on ? n ,n≥3, such that:
  1. X has not any stationary points on ? n ;
  2. all orbits ofX are bounded;
  3. there exists a filtration forX are proved in the present note.
  相似文献   

19.
In this paper we describe an implementation of a cutting plane algorithm for the perfect matching problem which is based on the simplex method. The algorithm has the following features:
  • -It works on very sparse subgraphs ofK n which are determined heuristically, global optimality is checked using the reduced cost criterion.
  • -Cutting plane recognition is usually accomplished by heuristics. Only if these fail, the Padberg-Rao procedure is invoked to guarantee finite convergence.
  • Our computational study shows that—on the average—very few variables and very few cutting planes suffice to find a globally optimal solution. We could solve this way matching problems on complete graphs with up to 1000 nodes. Moreover, it turned out that our cutting plane algorithm is competitive with the fast combinatorial matching algorithms known to date.  相似文献   

    20.
    We prove that if m and \({\nu}\) are integers with \({0 \leq \nu \leq m}\) and x is a real number, then
    1. $$\sum_{k=0 \atop k+m \, \, odd}^{m-1} {m \choose k}{k+m \choose \nu} B_{k+m-\nu}(x) = \frac{1}{2} \sum_{j=0}^m (-1)^{j+m} {m \choose j}{j+m-1 \choose \nu} (j+m) x^{j+m-\nu-1},$$ where B n (x) denotes the Bernoulli polynomial of degree n. An application of (1) leads to new identities for Bernoulli numbers B n . Among others, we obtain
    2. $$\sum_{k=0 \atop k+m \, \, odd}^{m -1} {m \choose k}{k+m \choose \nu} {k+m-\nu \choose j}B_{k+m-\nu-j} =0 \quad{(0 \leq j \leq m-2-\nu)}. $$ This formula extends two results obtained by Kaneko and Chen-Sun, who proved (2) for the special cases j = 1, \({\nu=0}\) and j = 3, \({\nu=0}\) , respectively.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号