首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction now.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocityprofiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction byusing the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation ofpolymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simpleshear flow, extensional flow, vortical flow, and mixed flow respectively.  相似文献   

2.
The results of molecular dynamics (MD) simulations on transport process of CO2 and CH4 gases in poly(ether-b- amide) (PEBAX)/nanosilica membranes are discussed. The diffusion coefficients for CH4 and CO2 gases at 6 cases with different amounts of nanosilica loading in the simulation boxes are presented. The results show that diffusion coefficients for CO2 gas in all cases are larger than those for the CH4 one. Moreover 10% nanosilica loading case shows maximum effects on diffusion coefficients and improves them by more than 68% and 157% for CO2 and CH4 gases, respectively. Additionally, the results of 3-D Cartesian trajectories and displacements curves are presented and the jumping attempt of CO2 is significantly more than that of CH4. Due to the rubbery state of PEBAX membranes in ambient temperature, the results confirm that channel lifetimes are very short and then back diffusion is not observed for this polymer.  相似文献   

3.
胡文兵 《高分子科学》2013,31(11):1590-1598
By means of dynamic Monte Carlo simulation of bulk lattice polymers in Couette shear flow, it was demonstrated that in addition to velocity gradient the constant driving forces acting as the activation aspect of shear stresses can also raise polymer deformation. Moreover, enhancing driving forces in a flow without any velocity gradient can reproduce nonNewtonian fluid behaviors of long-chain polymers. The simulations of Poiseuille shear flow with a gradient of shear stresses show that, the velocity gradient dominates small deformation in the flow layers of low shear stresses, while the shear stress dominates large deformation in the flow layers of high shear stresses. This result implies that the stress-induced deformation could be mainly responsible for the occurrence of non-Newtonian fluid behaviors of real polymers at high shear rates.  相似文献   

4.
Polymer chain coils with entanglement is a crucial scale of structures in polymer materials since their relaxation times are matching practical processing times. Based on the phenomenological model of polymer chain coils and a new finite element approach, we have designed a computer software including solver, pre- and post-processing modules, and developed a digital analysis technology for the morphology of polymer chain coils in flow fields (DAMPC). Using this technology we may simulate the morphology development of chain coils in various flow fields, such as simple shear flow, elongational flow,and any complex flow at transient or steady state. The appli cations made up to now show that the software predictions arecomparable with experimental results.  相似文献   

5.
The vertical gradient of suspended sediment concentration often exists in estuarine and coastal regions. The existence of such concentration gradient, particular that of cohesive suspended sediment concentration gradient, affects the flow velocity profile. Based on the wave-current full depth combined model, k-ε turbulent model is employed in this paper to simulate the effect of sediment concentration on the wave-current flow. A quantitative analysis of change mechanism of mean velocity profile is presented. The results show that the change mechanism of Eulerian mean current velocity under clear water is different from that under sediment-water mixed flow.  相似文献   

6.
By using Lorenz's moist general circulation model, a nonlinear and dissipative system describing atmospheric motion has been obtained in approximation of Low Order.The multiple equilibria and the transformation between the flow patterns of winter and summer, the latitudinal oscillation of subtropical high by thermal forcing and nonlinear interaction of general circulation are studied in this paper.The results show that the transformation of flow patterns is a discontinuous leaping, and is a process of resetting new flow pattern by rapid exchange inflow field.In the corresponding dry model, we cannot find the latitudinal oscillation of the center of subtropical high.In the moist model, after the thermal effect of water vapor is drawn into the model, nonlinear interaction appears between flow and heating fields.This effect helps to bring about the latitudinal oscillation of subtropical high.  相似文献   

7.
In this paper, a new theoretical model of nonlinear wave propagations in arteries with surrounding tissues was put forward. The equations of motion for the blood vessels and their peripheral tissues as a system have been derived. These equations were expressed in terms of the stresses of the vessel wall and fluid, and the geometry of the blood vessel. They can be used to solve numerically the problems for the propagations of nonlinear pulse waves in arteries together with the momentum and continuity equations of incompressible-viscous flow, as well as the constitutive equations of fluid and vessel wall. The numerical solutions can involve pressure, velocities and flowrate of the blood flow, as well as displacements, velocities and stresses of the vessel wall. These physical variables of propagations of pulse waves in arteries are all of significance physiologically and clinically.  相似文献   

8.
The transport properties of fluid argon in micropores, i.e. diffusivity and viscosity, were studied by molecular dynamics simulations. The effects of pore width, temperature and density on diffusivity and viscosity were analyzed in micropores with pore widths from 0.8 to 4.0 nm. The results show that the diffusivity in micropores is much lower than the bulk diffusivity, and it decreases as the pore width decreases; but the viscosity in micropores is significantly larger than the bulk one, and it increases sharply in narrow micropores. The diffusivity in channel parallel direction is obviously larger than that in channel perpendicular direction. The temperature and density are important factors that obviously affect diffusivity and viscosity in micropores.  相似文献   

9.
In the paper, numerical simulation is performed for Benard convection in a closed three-dimensional rectangle with non-slippery bound. Numerical results show that when Rayleigh number Ra<3.6×104, Benard convection is steady, and when Ra≥3.6×104 it is unsteady and irregular. The cross sections and correlation coefficients of various fields are studied, and it is found that the external correlation scales of flow decrease as Ra increases when Ra≥ 7.5×104. Moreover, statistical analyses show that the Taylor inner scales (λv,λθv and so on) also decrease as Ra increases, and that the changing rates of λv and λθv with height are very different to each other in the vicinity of upper and lower bounds. Furthermore, statistical analyses show that the computed Nusselt number Nu is close to the lower limit of many experimental values, and in the transient region of flow pattern d1gNu/d1gRa is relatively greater than that in other region. In addition, other statistical quantities of the fields of temperat  相似文献   

10.
A novel fluid micromixer based on pneumatic perturbation and passive structures was developed. This micromixer facilitates integration and is applicable to fluid mixing over a wide range of flow rates. The microfluidic mixing device consists of an S-shaped structure with two mixing chambers and two barriers, and two pneumatic chambers designed over the S-shaped channel. The performance of the micromixer for fluids with wide variation of flow rates was significantly improved owing to the integration of the pneumatic mixing components with the passive mixing structures. The mixing mechanism of the passive mixing structures was explored by numerical simulation, and the influencing factors on the mixing efficiency were investigated. The results showed that when using a gas pressure of 0.26 MPa and a 100 m-thick polydimethylsiloxane (PDMS) pneumatic diaphragm, the mixing of fluids with flow rates ranging from 1 to 650 L/min was achieved with a pumping frequency of 50 Hz. Fast synthesis of CdS quantum dots was realized using this device. Smaller particles were obtained, and the size distribution was greatly improved compared with those obtained using conventional methods.  相似文献   

11.
The influence of periodic and random surface textures on the flow structure and effective slip length in Newtonian fluids is investigated by molecular dynamics (MD) simulations. We consider a situation where the typical pattern size is smaller than the channel height and the local boundary conditions at wetting and nonwetting regions are characterized by finite slip lengths. In the case of anisotropic patterns, transverse flow profiles are reported for flows over alternating stripes of different wettability when the shear flow direction is misaligned with respect to the stripe orientation. The angular dependence of the effective slip length obtained from MD simulations is in good agreement with hydrodynamic predictions provided that the stripe width is larger than several molecular diameters. We found that the longitudinal component of the slip velocity along the shear flow direction is proportional to the interfacial diffusion coefficient of fluid monomers in that direction at equilibrium. In case of random textures, the effective slip length and the diffusion coefficient of fluid monomers in the first layer near the heterogeneous surface depend sensitively on the total area of wetting regions.  相似文献   

12.
The generalized equations of bulk and interfacial nematostatics in terms of the tensor order parameter are derived using calculus of variations, taking into account long and short range nematic bulk free energies as well as anchoring and saddle-splay surface free energies. A general expression for the surface stress tensor order parameter for a nematic liquid crystal/isotropic fluid (NLC/I) interface has been derived, and found to represent normal, shear, and bending stresses. It is shown that the surface stress tensor is asymmetric. It is also found that anchoring energy contributes to bending and normal stresses, while saddle-splay energy contributes to normal and shear stresses. The rotational identifies governing the bulk and surface stress tensors are derived and used to show that the equations of nematostatics are fully consistent with the general balance equations of polar fluids. The equations presented provide a theoretical framework for solving interfacial problems involving NLCs that is applicable to cases where variations in liquid crystalline order and saddle-splay energy play significant roles.  相似文献   

13.
The generalized equations of bulk and interfacial nematostatics in terms of the tensor order parameter are derived using calculus of variations, taking into account long and short range nematic bulk free energies as well as anchoring and saddle-splay surface free energies. A general expression for the surface stress tensor order parameter for a nematic liquid crystal/isotropic fluid (NLC/I) interface has been derived, and found to represent normal, shear, and bending stresses. It is shown that the surface stress tensor is asymmetric. It is also found that anchoring energy contributes to bending and normal stresses, while saddle-splay energy contributes to normal and shear stresses. The rotational identifies governing the bulk and surface stress tensors are derived and used to show that the equations of nematostatics are fully consistent with the general balance equations of polar fluids. The equations presented provide a theoretical framework for solving interfacial problems involving NLCs that is applicable to cases where variations in liquid crystalline order and saddle-splay energy play significant roles.  相似文献   

14.
The unsteady hydromagnetic flow of electrically conducting liquids whose Prandtl numbers are different from unity has been considered when the flow takes place near an infinite vertical flat plate subject to uniform heat flux and accelerated motion. A unified exact solution has been derived for the boundary layer velocity and skin friction for the cases of magnetic field being fixed relative to the fluid or to the vertical plate. The solution has been presented in real forms for fluids whose Prandtl numbers are greater than or less than unity. The response of the boundary layer fluid velocity to the variations in magnetic and buoyancy forces has been discussed for two sample fluids corresponding to the different Prandtl number categories. The influence of these forces on the skin friction has also been shown.  相似文献   

15.
This paper considers the electrophoretic motion of a spherical particle in an aqueous electrolyte solution in a T-shaped rectangular microchannel, where the size of the channel is close to that of the particle. This is a complicated transient process where the electric field, the flow field, and the particle motion are coupled together. A theoretical model was developed to investigate the influences of the applied electric potentials, the zeta potentials of the channel and the particle, and the size of the particle on the particle motion. A direct numerical simulation method using the finite element method is employed. This method employs a generalized Galerkin finite element formulation that incorporates both equations of the fluid flow and equations of the particle motion into a single variational equation where the hydrodynamic interactions are eliminated. The ALE method is used to track the surface of the particle at each time step. The numerical results show that the electric field in the T-shaped microchannel is influenced by the presence of the particle, and that the particle motion is influenced by the applied electric potentials and the zeta potentials of the channel and the particle. The path of the particle motion is dominated by the local electric field and the ratio of the zeta potential of the channel to that of the particle. The particle's velocity is also dependent on its size in a small channel.  相似文献   

16.
纳米通道内表面浸润性对气泡的作用   总被引:2,自引:0,他引:2  
解辉  刘朝 《物理化学学报》2009,25(12):2537-2542
运用分子动力学模拟方法研究了在质量力驱动下不同浸润性壁面纳米通道中气泡的分布及其运动状况, 提出了一种统计纳米通道中气泡运动速度的方法. 结果显示, 在亲水性壁面的纳米通道中, 气泡位于通道中间, 气泡的运动速度接近但小于通道中心流速, 在势能强度较大时, 壁面吸附的分子较多, 气泡也较大, 反之则气泡较小; 对超疏水性壁面, 气泡则位于固壁附近, 两个壁面形成对称的一对气泡, 气泡的运动速度接近但大于边缘速度. 流体总的流动速度随着流体粒子与壁面粒子作用的减弱而增大, 滑移速度则逐渐从负转变为正.  相似文献   

17.
We investigate the transport of immiscible binary fluid layers, constituted by one conducting (top layer fluid) and another non‐conducting (bottom layer fluid) fluids in a microfluidic channel under the combined influences of an applied pressure gradient and imposed electric field. We solve the transport equation governing the flow dynamics analytically and obtain the closed‐form expressions of the velocity fields. We bring out the alteration in the flow dynamics, mainly attributable to the non‐linear interaction between interfacial slip and the electrical double layer effect over small scales as modulated by the applied pressure gradient. In particular, we show the augmentation in the net volume transport rate through the channel, emerging from an intricate competition among electrical forcing, applied pressure gradient and the viscous resistance as modulated by the interfacial slip. We believe that the results of this study may be of immense consequence for the design of various microfluidic devises, which are often used for the manipulation of two immiscible fluids in different biomedical/biochemical processes.  相似文献   

18.
Molecular dynamics simulations of chain molecules are used to elucidate physical phenomena involved in flows of dense immiscible fluids in nanochannels. We first consider a force driven flow in which the channel walls are homogeneous and wetting to one fluid and nonwetting to the other fluid. The coating of the walls by the wetting fluid provides a fluctuating surface that confines the flow of the nonwetting fluid. The resulting dissipation yields stationary Poiseuille-like flows in contrast to the accelerating nature of flow in the absence of the coating. We then consider walls consisting of patches whose wetting preferences to a fluid alternate along the walls. In the resulting flow, the immiscible components exhibit periodic structures in their velocity fields such that the crests are located at the wettability steps in contrast to the behavior of a single fluid for which the crest occurs in the wetting region. We demonstrate that for a single fluid, the modulated velocity field scales with the size of the chain molecules.  相似文献   

19.
The purpose of this study is to investigate non-Darcian mixed convection flow, heat and mass transfer in a non-Newtonian power-law fluid over a flat plate embedded in porous medium with suction and viscous dissipation and also is to demonstrate the application and utility of a recently developed multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) in finding the solutions of highly nonlinear differential equations. The flow is subject to, among other source terms, internal heat generation, thermal radiation and partial velocity slip. The coupled system of nonlinear partial differential equations are solved using a MD-BSQLM to find the fluid properties, the skin friction, as well as the heat and mass coefficients. We have presented selected results that give the significance of some system parameters on the fluid properties. This MD-BSQLM has not been used before in the literature to find the nature of the solutions of power-law fluids. Indeed, validation of this numerical method for general fluid flows, heat and mass transfer problems has not yet been done. This study presents the first opportunity to evaluate the accuracy and robustness of the MD-BSQLM in finding solutions of non-Newtonian fluids.  相似文献   

20.
A computational "toolbox" for the a priori design of optimized microfluidic components is presented. These components consist of a microchannel under low-Reynolds number, pressure-driven flow, with an arrangement of grooves cut into the top and bottom to generate a tailored cross-channel flow. An advection map for each feature (i.e., groove of a particular shape and orientation) predicts the lateral transport of fluid within the channel due to that feature. We show that applying these maps in sequence generates an excellent representation of the outflow distribution for complex designs that combine these basic features. The effect of the complex three-dimensional flow field can therefore be predicted without solving the governing flow equations through the composite geometry, and the resulting distribution of fluids in the channel is used to evaluate how well a component performs a specified task. The generation and use of advection maps is described, and the toolbox is applied to determine optimal combinations of features for specified mixer sizes and mixing metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号