首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string, the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string. To derive the governing equation, Newton‘s second law, Lagrangean strain, and Kelvin‘s model are respectively used to account the dynamical relation, geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms, closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance. The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance. Some numerical examples are presented to show the effects of the mean transport speed, the amplitude and the frequency of speed variation.  相似文献   

2.
研究磁场环境中轴向运动导电薄板磁弹性动力学及分岔特性。考虑几何非线性因素,在给出薄板运动的动能、应变能及外力虚功的基础上,应用哈密顿变分原理,得到磁场中轴向运动薄板的非线性磁弹性振动方程,并给出洛伦兹电磁力的确定形式。针对横向磁场环境中条形板共振特性进行分析,应用多尺度法和奇异性理论,得到稳态运动下的分岔响应方程以及普适开折对应的转迁集。通过算例,分别得到以磁感应强度、轴向运动速度和激励力为分岔控制参数的分岔图、最大李雅普诺夫指数图和庞加莱映射图等计算结果,讨论不同分岔参数对系统呈现的倍周期和混沌运动的影响。结果表明,通过相应参数的改变可实现对系统复杂动力学行为的控制。  相似文献   

3.
丁虎 《计算力学学报》2012,29(4):545-550
分别通过两种直接数值方法研究速度变化的经典边界条件下轴向运动黏弹性梁参数振动的稳定性。在控制方程的推导中,采用物质导数黏弹性本构关系和只对时间取偏导数的黏弹性本构关系;分别运用有限差分法和微分求积法对两种经典边界下轴向变速运动黏弹性梁的非线性控制方程求数值解,计算得到梁中点非线性参数振动的稳定稳态响应。数值结果表明,两种黏弹性本构关系对应的稳态响应存在明显差别,同时发现两种直接数值方法的仿真结果基本吻合,证明数值仿真具有较高精度。  相似文献   

4.
研究面内载荷作用下轴向变速运动正交各向异性薄板的横向振动及其稳定性。利用Galerkin法与平均法,在激励频率为2倍固有频率或为两阶固有频率之和附近时得到自治的常微分方程组;在参数激励频率和激励振幅平面上,分析由共振引发的失稳区域。数值算例验证了面内载荷、轴向速度、加速度参数对失稳区域的影响。  相似文献   

5.
The dynamic stability of axially accelerating plates is investigated. Longitudinally varying tensions due to the acceleration and nonhomogeneous boundary conditions are highlighted. A model of the plate combined with viscoelasticity is applied. In the viscoelastic constitutive relationship, the material derivative is used to take the place of the partial time derivative. Analytical and numerical methods are used to investigate summation and principal parametric resonances, respectively. By use of linear models for the transverse behavior in the small displacement regime, the plate is confined by a viscous damping force. The generalized Hamilton principle is used to derive the governing equations, the initial conditions, and the boundary conditions of the coupled planar vibration. The solvability conditions are established by directly using the method of multiple scales. The Routh-Hurwitz criterion is used to obtain the necessary and sufficient condition of the stability. Numerical examples are given to show the effects of related parameters on the stability boundaries. The validity of longitudinally varying tensions and nonhomogeneous boundary conditions is highlighted by comparing the results of the method of multiple scales with those of a differential quadrature scheme.  相似文献   

6.
Summary Nonlinear dynamics of one-mode approximation of an axially moving continuum such as a moving magnetic tape is studied. The system is modeled as a beam moving with varying speed, and the transverse vibration of the beam is considered. The cubic stiffness term, arising out of finite stretching of the neutral axis during vibration, is included in the analysis while deriving the equations of motion by Hamilton's principle. One-mode approximation of the governing equation is obtained by the Galerkin's method, as the objective in this work is to examine the low-dimensional chaotic response. The velocity of the beam is assumed to have sinusoidal fluctuations superposed on a mean value. This approximation leads to a parametrically excited Duffing's oscillator. It exhibits a symmetric pitchfork bifurcation as the axial velocity of the beam is varied beyond a critical value. In the supercritical regime, the system is described by a parametrically excited double-well potential oscillator. It is shown by numerical simulation that the oscillator has both period-doubling and intermittent routes to chaos. Melnikov's criterion is employed to find out the parameter regime in which chaos occurs. Further, it is shown that in the linear case, when the operating speed is supercritical, the oscillator considered is isomorphic to the case of an inverted pendulum with an oscillating support. It is also shown that supercritical motion can be stabilised by imposing a suitable velocity variation. Received 13 February 1997; accepted for publication 29 July 1997  相似文献   

7.
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method.The rectangular thin plate is subject to transversal and in-plane excitation.A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach.A one-toone internal resonance is considered.An averaged equation is obtained with a multi-scale method.After transforming the averaged equation into a standard form,the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics,which can be used to explain the mechanism of modal interactions of thin plates.A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits.Furthermore,restrictions on the damping,excitation,and detuning parameters are obtained,under which the multi-pulse chaotic dynamics is expected.The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate.  相似文献   

8.
Transverse vibration characteristics of axially moving viscoelastic plate   总被引:4,自引:0,他引:4  
The dynamic characteristics and stability of axially moving viscoelastic rect- angular thin plate are investigated.Based on the two dimensional viscoelastic differential constitutive relation,the differential equations of motion of the axially moving viscoelastic plate are established.Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported,two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method.The effects of the aspect ratio,moving speed and dimensionless delay time of the material on the trans- verse vibration and stability of the axially moving viscoelastic plate are analyzed.  相似文献   

9.
运用近似解析方法和数值方法研究轴向变速运动黏弹性Rayleigh梁的次谐波共振和组合共振的稳定性区域。基于变分原理,考虑梁断面旋转惯性的影响,推导轴向速度有周期波动的微变形梁横向振动的数学模型;采用多尺度方法建立前两阶次谐波共振和组合共振范围内的参数振动的可解性条件;进而确定梁两端简支边界条件下,因共振而产生的失稳区域;通过微分求积方法求解表征细长Rayleigh梁横向振动的运动微分方程。数值算例分析了黏弹性系数和扭转系数对梁振动失稳区域的影响,将数值仿真结果与近似解析方法的结论进行比较。算例表明:近似解析解的精度较高,第一、第二阶主共振的最大误差分别为3.206%、4.213%。  相似文献   

10.
Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electro- magnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed. Some complex dynamic performances such as period- doubling motion and quasi-period motion are discussed.  相似文献   

11.
首先把弹性薄板弯曲问题的控制方程表示成为Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出矩形悬臂薄板的解析解。由于在求解过程中不需要事先人为地选取挠度函数,而是从薄板弯曲的基本方程出发,直接利用数学的方法求出可以满足其边界条件的这类问题的解析解,使得问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文所采用的方法以及所推导出的公式的正确性。  相似文献   

12.
四边固支矩形薄板自由振动的哈密顿解析解   总被引:1,自引:1,他引:1  
在哈密顿体系中利用辛几何方法求解了四边固支矩形薄板自由振动问题的解析解。首先,从基本方程出发,将问题表示成Hamilton正则方程,然后利用辛几何方法导出本征值问题,从而得到本征函数解,使之满足边界条件;再由方程组有非零解的条件,最终推导出四边固支矩形薄板的自振频率方程,得到频率的解析解。计算了不同长宽比情况下四边固支矩形薄板的频率,结果与已有文献完全一致。该解法有望推广至更多尚未得到解析解的矩形板的振动问题。  相似文献   

13.
基于有限条带的厚/薄板矩形通用单元   总被引:1,自引:0,他引:1  
基于两广义位移梁理论,利用解析试函数来建立厚/薄梁单元的横向位移、转角位移、曲率、剪应变等位移模式,构造出厚/薄梁通用单元.应用有限条带,将厚/薄梁单元的位移模式应用于厚/薄板矩形弯曲单元,直接构造出单元的横向位移、转角、曲率、剪应变,导出了单元的刚度矩阵和结点等效力,编制了计算程序,进行了数值计算和比较,结果表明,所研究的单元不出现剪切闭锁且精度较好.  相似文献   

14.
轴向运动导电薄板磁弹性耦合动力学理论模型   总被引:1,自引:0,他引:1  
针对磁场环境中轴向运动导电薄板的动力学理论建模问题进行研究,得到较为完备的磁弹性耦合振动基本方程及相应的补充关系式.在考虑几何非线性效应下,给出薄板运动的动能、应变能以及外力虚功的表达式.应用啥密顿变分原理,推得磁场中轴向运动薄板的非线性磁弹性耦合振动方程,并得到力和位移满足的边界条件.基于麦克斯韦电磁场方程,并考虑相应的电磁本构关系和电磁边界条件,推得任意磁场环境中轴向运动导电薄板满足的电动力学方程和所受电磁力表达式.分别针对纵向磁场环境、横向磁场环境、条形板等具体情形,给出振动方程、电动力学方程和电磁力的简化形式.所得结果,可为此类问题的进一步求解和分析提供理论参考.  相似文献   

15.
写出了任意局部荷载作用下各种不同边界条件矩形板的解的表达式.通过梁与板的边界协调分析,求出不同荷载作用下的有梁矩形板解析解,并通过改变其中参数EI与GIt的数值,可以得出局部荷载作用下各种不同边界条件下矩形板的解.  相似文献   

16.
The dynamic stability of axially moving viscoelastic Rayleigh beams is presented. The governing equation and simple support boundary condition are derived with the extended Hamilton’s principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscosity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.  相似文献   

17.
基于薄板理论和弹性动力学Hamilton原理的推广,采用无网格伽辽金法,建立了具有有限多个点弹性支承的弹性矩形薄板横向振动的无量纲量运动微分方程,给出了其特征方程。通过求解特征方程,得出了四边简支板的无量纲固有频率随点弹性支承的刚性系数和支承位置的变化曲线,分析了点弹性支承的刚性系数和支承位置对矩形薄板横向振动特性的影响。数值计算结果表明,无网格法求解点弹性支承板横向振动问题是切实可行的。  相似文献   

18.
应用数值模拟方法研究磁场中旋转运动圆板的分叉与混沌问题。首先,基于薄板理论和麦克斯韦电磁场方程组,给出了动能、应变势能、外力虚功以及电磁力的表达式,再利用哈密顿原理,得到磁场中旋转运动圆板横向振动的非轴对称非线性磁弹性振动微分方程组。其次,采用贝塞尔函数作为圆板的振型函数进行伽辽金积分,得到了轴对称情况下横向振动的常微分方程组表达式。最后,针对主共振,取周边夹支边界条件的圆板作为算例,得到了当振型函数取一阶时,将磁感应强度、外激励振幅和激励频率作为控制参数的分叉图及庞加莱映射图等计算结果,并讨论了分叉参数对系统的分叉与混沌的影响。数值计算结果表明,这些控制参数的变化影响系统稳定性,在分叉参数逐渐变化的过程中,系统经历从混沌到多倍周期运动再到混沌的往复过程。  相似文献   

19.
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.  相似文献   

20.
Based on the von Karman plate theory of large deflection, we have derived a non-linear partial differential equation for the vibration of a thin orthotropic plate under the combined action of a transverse magnetic field and a transverse harmonic mechanical load. The influence of the magnetic field is due to the magnetic Lorentz force induced by the eddy current. By employing the Bubnov-Galerkin method, the non-linear partial differential equation is transformed into a third-order non-linear ordinary differential equation. The amplitude-frequency equations are further derived by means of the multiple-scale method. As numerical examples for an orthotropic plate made of silver, the influence of the magnetic field, orthotropic material property, plate thickness, and the mechanical load on the principal resonance behavior is investigated. The higher-order effect and stability of the solution are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号