首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observation of the otoacoustic emissions (OAEs) evoked during a continuous single stimulus tone have been made on humans using a nonlinear residual time domain technique. The technique, described in this paper, involved the digital summation of responses to contiguous stimulation intervals, some of which included short bursts of a suppressor, or probe, tone. Stimulus intervals are constructed so that both the stimulus and probe tones summed to zero cyclically, leaving a residual response. This residual is attributable to the nonlinearity of the whole acoustic response, as measured in the ear canal, to the stimulus and probe tone complex. A theoretical treatment of this paradigm is presented examining the relation of this residual to the OAE evoked by the stimulus tone. It is shown experimentally that the residual, found at the stimulus tone frequency, has a latency and saturating input-output growth functions indicative of an OAE. The detailed OAE amplitude-versus-frequency variations, and the general latencies of the OAEs in two human ears were measured using both the constant tone evoked residual method described and the click evoked delayed emission method. The results from both methods are in agreement. The frequency-dependent properties of the suppression of the OAE were investigated using various stimuli to probe frequency ratios. The continuous tone time domain residual method has advantages for the observation of stimulus frequency OAEs and for relating these to any distortion product simultaneously generated.  相似文献   

2.
The greatest difference in distortion product otoacoustic emission (DPOAE) suppression tuning curves (STCs) in infant and adult ears occurs at a stimulus frequency of 6 kHz. These infant and adult STCs are much more similar when constructed using the absorbed power level of the stimulus and suppressor tones rather than using sound pressure level. This procedure incorporates age-related differences in forward and reverse transmission of sound power through the ear canal and middle ear. These results support the theory that the cochlear mechanics underlying DPOAE suppression are substantially mature in full-term infants.  相似文献   

3.
The phase versus frequency function of the distortion product otoacoustic emission (DPOAE) at 2f(1) - f(2) is approximately invariant at frequencies above 1.5 kHz in human subjects when recorded with a constant f(2)/f(1). However, a secular break from this invariance has been observed at lower frequencies where the phase-gradient becomes markedly steeper. Apical DPOAEs, such as 2f(1)?- f(2), are known to contain contributions from multiple sources. This experiment asked whether the phase behavior of the ear canal DPOAE at low frequencies is driven by the phase of the component from the distortion product (DP) region at 2f(1)?- f(2), which exhibits rapid phase accumulation. Placing a suppressor tone close in the frequency to 2f(1)?- f(2) reduced the contribution of this component to the ear canal DPOAE in normal-hearing adult human ears. When the contribution of this component was reduced, the phase behavior of the ear canal DPOAE was not altered, suggesting that the breaking from DPOAE phase invariance at low frequencies is an outcome of apical-basal differences in cochlear mechanics. The deviation from DPOAE phase invariance appears to be a manifestation of the breaking from approximate scaling symmetry in the human cochlear apex.  相似文献   

4.
2f1-f2 and 2 f2-f1 distortion product otoacoustic emissions (DPOAEs) were recorded from both ears of male and female Rana pipiens pipiens and Rana catesbeiana. The input-output (I/O) curves obtained from the amphibian papilla (AP) of both frog species are analogous to I/O curves recorded from mammals suggesting that, similarly to the mammalian cochlea, there may be an amplification process present in the frog AP. DPOAE level dependence on L1-L2 is different from that in mammals and consistent with intermodulation distortion expectations. Therefore, if a mechanical structure in the frog inner ear is functioning analogously to the mammalian basilar membrane, it must be more broadly tuned. DPOAE audiograms were obtained for primary frequencies spanning the animals' hearing range and selected stimulus levels. The results confirm that DPOAEs are produced in both papillae, with R. catesbeiana producing stronger emissions than R. p. pipiens. Consistent with previously reported sexual dimorphism in the mammalian and anuran auditory systems, females of both species produce stronger emissions than males. Moreover, it appears that 2 f1-f2 in the frog is generated primarily at the DPOAE frequency place, while 2 f2-f1 is generated primarily at a frequency place around the primaries. Regardless of generation place, both emissions within the AP may be subject to the same filtering mechanism, possibly the tectorial membrane.  相似文献   

5.
A detailed measurement of distortion product otoacoustic emission (DPOAE) fine structure was used to extract estimates of the two major components believed to contribute to the overall DPOAE level in the ear canal. A fixed-ratio paradigm was used to record DPOAE fine structure from three normal-hearing ears over a range of 400 Hz for 12 different stimulus-frequency ratios between 1.053 and 1.36 and stimulus levels between 45 and 75 dB SPL. Inverse Fourier transforms of the amplitude and phase data were filtered to extract the early component from the generator region of maximum stimulus overlap and the later component reflected from the characteristic frequency region of the DPOAE. After filtering, the data were returned to the frequency domain to evaluate the impact of the stimulus-frequency ratio and stimulus level on the relative levels of the components. Although there were significant differences between data from different ears some consistent patterns could be detected. The component from the overlap region of the stimulus tones exhibits a bandpass shape, with the maximum occurring at a ratio of 1.2. The mean data from the DPOAE characteristic frequency region also exhibits a bandpass shape but is less sharply tuned and exhibits greater variety across ears and stimulus levels. The component from the DPOAE characteristic frequency region is dominant at ratios narrower than approximately 1.1 (the transition varies between ears). The relative levels of the two components are highly variable at ratios greater than 1.3 and highly dependent on the stimulus level. The reflection component is larger at all ratios at the lowest stimulus level tested (45/45 dB SPL). We discuss the factors shaping DPOAE-component behavior and some cursory implications for the choice of stimulus parameters to be used in clinical protocols.  相似文献   

6.
Middle and inner ears from human cadaver temporal bones were stimulated in the forward direction by an ear-canal sound source, and in the reverse direction by an inner-ear sound source. For each stimulus type, three variables were measured: (a) Pec--ear-canal pressure with a probe-tube microphone within 3 mm of the eardrum, (b) Vst--stapes velocity with a laser interferometer, and (c) Pv--vestibule pressure with a hydrophone. From these variables, the forward middle-ear pressure gain (M1), the cochlear input impedance (Zc), the reverse middle-ear pressure gain (M2), and the reverse middle-ear impedance (M3) are directly obtained for the first time from the same preparation. These measurements can be used to fully characterize the middle ear as a two-port system. Presently, the effect of the middle ear on otoacoustic emissions (OAEs) is quantified by calculating the roundtrip middle-ear pressure gain Gme(RT) as the product of M1 and M2. In the 2-6.8 kHz region, absolute value(Gme(RT)) decreases with a slope of -22 dB/oct, while OAEs (both click evoked and distortion products) tend to be independent of frequency; this suggests a steep slope in vestibule pressure from 2 kHz to at least 4 kHz for click evoked OAEs and to at least 6.8 kHz for distortion product OAEs. Contrary to common assumptions, measurements indicate that the emission generator mechanism is frequency dependent. Measurements are also used to estimate the reflectance of basally traveling waves at the stapes, and apically generated nonlinear reflections within the vestibule.  相似文献   

7.
The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.  相似文献   

8.
Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been performed with normal-hearing subjects. The dependence of fine-structure patterns on the frequency ratio f2/f1 was investigated by changing f1 or f2 only (fixed f2 or fixed f1 paradigm, respectively), and by changing both primaries at a fixed ratio and looking at different order DPOAE. When f2/f1 is varied in the fixed ratio paradigm, the patterns of 2 f1-f2 fine structure vary considerably more if plotted as a function of f2 than as a function of fDP. Different order distortion products located at the same characteristic place on the basilar membrane (BM) show similar patterns for both, the fixed-f2 and fDP paradigms. Fluctuations in DPOAE level up to 20 dB can be observed. In contrast, the results from a fixed-fDP paradigm do not show any fine structure but only an overall dependence of DP level on the frequency ratio, with a maximum for 2f1-f2 at f2/f1 close to 1.2. Similar stimulus configurations used in the experiments have also been used for computer simulations of DPOAE in a nonlinear and active model of the cochlea. Experimental results and model simulations give strong evidence for a two-source model of DPOAE generation: The first source is the initial nonlinear interaction of the primaries close to the f2 place. The second source is caused by coherent reflection from a re-emission site at the characteristic place of the distortion product frequency. The spectral fine structure of DPOAE observed in the ear canal reflects the interaction of both these sources.  相似文献   

9.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

10.
Distortion product otoacoustic emissions (DPOAEs) measured in the ear canal represent the vector sum of components produced at two regions of the basilar membrane by distinct cochlear mechanisms. In this study, the effect of stimulus level on the 2f(1)?- f(2) DPOAE phase was evaluated in 22 adult subjects across a three-octave range. Level effects were examined for the mixed DPOAE signal measured in the ear canal and after unmixing components to assess level effects individually on the distortion (generated at the f(1), f(2) overlap) and reflection (at f(dp)) sources. Results show that ear canal DPOAE phase slope becomes steeper with decreasing level; however, component analysis further explicates this result, indicating that interference between DPOAE components (rather than a shift in mechanics related to distortion generation) drives the level dependence of DPOAE phase measured in the ear canal. The relative contribution from the reflection source increased with decreasing level, producing more component interference and, at times, a reflection-dominated response at the lowest stimulus levels. These results have implications for the use of DPOAE phase to study cochlear mechanics and for the potential application of DPOAE phase for clinical purposes.  相似文献   

11.
When a two-tone stimulus is presented to the ear, so-called distortion product otoacoustic emissions (DPOAEs) are evoked. Adding an interference tone (IT) to these two DPOAE-evoking primaries affects normal DPOAE generation. The "effectiveness" of interference depends on the frequency of the IT in relation to the primary frequencies and this provides clues about the locus of emission generation within the inner ear. Here results are presented on the effects of ITs on DPOAEs thought to originate from the basilar papilla (BP) of a frog species. It is found that the IT always resulted in a reduction of the recorded DPOAE amplitude: DPOAE enhancement was not observed. Furthermore, iso-suppression curves (ISCs) exhibited two relative minima suggesting that the DPOAEs arise at different loci in the inner ear. These minima occurred at fixed frequencies, which coincided with those primary frequencies that resulted in maxima in DPOAE audiograms. The occurrence of two minima suggests that DPOAEs, which are presumed to originate exclusively from the BP, partially arise from the amphibian papilla as well. Finally, the finding that the minima in the ISCs are independent of the primary or DPOAE frequencies provides support for the notion that the BP functions as a single auditory filter.  相似文献   

12.
13.
The level of 2f1-f2 acoustic distortion product (ADP) measured in the meatus during two-tone stimulation was compared with N 1 thresholds measured at the round window for the guinea pig. A significant inverse relation was found between distortion level and N 1 threshold. A similar relationship has also been reported for ADP level and subjective thresholds in half the human ears measured [S.A. Gaskill and A.M. Brown, J. Acoust. Soc. Am. 88, 821-839 (1990)]. Guinea pig and human ADP levels behave similarly in response to varying stimulus parameters. The ADP levels grow to a maximum and decline with increasing stimulus separation. The decline is steeper in the human ear. In both species, ADP growth as a function of stimulus level is approximately 1 with covaried stimuli; more gradual with the level of f2 (L 2) alone increasing and steeper when the level of f1 (L 1) alone is increased. The latter slopes are strongly influenced by the level of the stationary L 2 and are less steep in the human ear. A link has been proposed between differences in ADP behavior and differences in auditory filter bandwidth in the two species. Guinea pigs show little intersubject variability in ADP level. They do not show the fine structure in distortion level across frequency or the variation in growth rate seen in human responses. Differences in organ of Corti fine structure may underly these differences.  相似文献   

14.
Acoustic emissions in the form of cubic difference tones (CDT's), 2f1-f2, were measured in the ear canals of gerbils and cats. The state of the cochlea was manipulated by means of acute exposure to noise and was monitored with the aid of the whole-nerve response to tone pips. The resulting shifts in the levels of emissions generated by pairs of primary tones of equal intensity were then compared to the corresponding threshold shifts of the whole-nerve response across frequency. Data obtained from normal ears before injury indicate that the absolute thresholds of the whole-nerve responses across frequency are not necessarily good predictors of the absolute levels of CDT emissions generated by 70- and 80-dB SPL primaries. While high emission levels were often linked to low whole-nerve thresholds in pre-exposed ears, instances of animals with sensitive whole-nerve thresholds coupled with very weak emissions were also found. Conversely, animals with poor whole-nerve thresholds (shifted by up to 30 dB) could occasionally have high levels of emissions. After acute noise injury, however, the shifts of emission levels as a function of the center frequency of the primary-tone pair largely corresponded to the threshold shifts seen in the whole-nerve response. In other words, the temporary level shift of an acoustic emission largely reflected the acute change to a specific cochlear region associated with the primary frequencies.  相似文献   

15.
Wave and place fixed DPOAE maps of the human ear   总被引:2,自引:0,他引:2  
Human intermodulation distortion product otoacoustic emissions (DPOAE) can be a mixture of low and high latency components. They have different level, phase, and suppression characteristics, which indicate that emissions arise both from the frequency region of the primary tones directly and indirectly via the DP frequency place. Which component dominates the measured DPOAE in the ear canal depends on the stimulus parameters, especially the frequency ratio, f2/f1. Interference between the two emissions adds complexity to measurements of DPOAE. The behavior and even existence of whichever emission route is lower in level often cannot directly be deduced from the raw DPOAE data because the other emission covers it. It is therefore not known whether both emissions are present for all stimulus parameters or whether the trends seen in each emission when they are the dominant emission route continue under stimulus conditions when they are not dominant. In this study, the two DPOAE components are separated by a post-processing method. Previously, maps of raw DPOAE data against f2/f1 and DP frequency have been obtained. To separate the components, sets of data consisting of f2/f1 sweeps were transformed by an inverse Fourier transform into the time domain. The low and high latency components appeared as two distinct peaks because of their different phase gradients. These peaks were separated by windowing in the time domain and two frequency domain maps were reconstructed, representing the low and high latency DPOAEs. It was found that the low latency component of the 2 f1-f2 DP was only emitted strongly with f2/f1 between approximately 1.1 and 1.3. The removal of the high latency component revealed the low ratio edge of this region, at which the level falls sharply. However, the low latency emission has been traced at reduced amplitude over a wide range of stimulus parameters. Although previously only observed at small frequency ratios, the high latency component was found to be present widely in the lower sideband, its level reducing slowly at larger f2/f1. Its phase behavior changes in the lower sideband, being approximately constant with DP frequency at small ratios of f2/f1, but deviating from this at wider ratios. These results support the hypothesis that a DPOAE component which propagates to and is re-emitted from the DP frequency place (place fixed emission) is present across a wide parameter range. However, for all but the close primary condition the lower sideband DPOAE is dominated by direct emission from the region of f2 and f1 wave interaction (wave fixed emission). A simple transmission line model is presented to illustrate how the observed DPOAE maps can arise on the basis of this hypothesis.  相似文献   

16.
Distortion product otoacoustic emission (DPOAE) frequency functions were measured in normal-hearing and hearing-impaired ears. A fixed-f2/swept-f1 paradigm was used with f2 fixed at half-octave intervals from 1 to 8 kHz. L1 was always 10 dB greater than L2, and L2 was varied from 65 to 10 dB SPL in 5-dB steps. The responses were quantified by the frequency and amplitude of the peak response. Peak responses were closer to f2 in higher frequency regions and for lower intensity stimulation. Results from hearing-impaired subjects suggest that audiometric thresholds at the distortion product frequency, fdp, in addition to hearing status at f2, can affect DPOAE results. Results are discussed in terms of several manifestations of a second resonance model, as well as a dual source model for the generation of DPOAEs as measured in the ear canal of humans. It appears that a dual source model accounts for the data better than second filter models.  相似文献   

17.
Transient-evoked stimulus-frequency otoacoustic emissions (SFOAEs), recorded using a nonlinear differential technique, and distortion-product otoacoustic emissions (DPOAEs) were measured in 17 normal-hearing and 10 hearing-impaired subjects using pairs of tone pips (pp), gated tones (gg), and for DPOAEs, continuous and gated tones (cg). Temporal envelopes of stimulus and OAE waveforms were obtained by narrow-band filtering at the stimulus or DP frequency. Mean SFOAE latencies in normal ears at 2.7 and 4.0 kHz decreased with increasing stimulus level and were larger at 4.0 kHz than latencies in impaired ears. Equivalent auditory filter bandwidths were calculated as a function of stimulus level from SFOAE latencies by assuming that cochlear transmission is minimum phase. DPOAE latencies varied less with level than SFOAE latencies. The ppDPOAEs often had two (or more) peaks separated in time with latencies consistent with model predictions for distortion and reflection components. Changes in ppDPOAE latency with level were sometimes explained by a shift in relative amplitudes of distortion and reflection components. The pp SFOAE SPL within the main spectral lobe of the pip stimulus was higher for normal ears in the higher-frequency half of the pip than the lower-frequency half, which is likely an effect of basilar membrane two-tone suppression.  相似文献   

18.
The acoustic intermodulation distortion product 2f1-f2 (ADP) was measured in human subjects to investigate (1) the dependence of ADP level on stimulus parameters and (2) the relationship between ADP level and auditory sensitivity. The frequency ratio (f2/f1), at which ADP level is maximal, varies only slightly across frequency and subjects. The average optimal ratio is 1.225. Beyond the maximum, the ADP level declines with increasing f2/f1 ratio, at rates of up to 250 dB/oct. As the level of one stimulus is increased relative to the other, the ADP grows, saturates, and in most cases shows a bendover. Maximum distortion is generated when L 1 exceeds L 2. Growth rate and saturation point are dependent on which stimulus is incremented and on the level of the stationary stimulus. With optimal stimulus parameters (levels below 60 dB SPL; L 1 greater than L 2 by 15 dB; f2/f1 = 1.225), ADP levels are commonly 30 dB below L 2. Patterns of ADP level across frequency vary between subjects, but are repeatable within each subject. As the frequency of one or both of the stimuli is varied, changes in ADP level exhibit a broadly featured pattern with a fine structure superimposed upon it. This fine structure was compared with the features in the stimulus frequency emission spectrum in one subject. With appropriate stimulus parameters, half of our subjects show a statistically significant correlation across frequency, between ADP level and auditory sensitivity at the corresponding f1 frequency. Our results suggest that, with low levels of stimulation, ADP measurements could form the basis of an objective measure of cochlear function in human subjects.  相似文献   

19.
Primary and secondary sources combine to produce the 2f1-f2 distortion product otoacoustic emission (DPOAE) measured in the ear canals of humans. DPOAEs were obtained in nine normal-hearing subjects using a fixed-f2 paradigm in which f1 was varied. The f2 was 2 or 4 kHz, and absolute and relative primary levels were varied. Data were obtained with and without a third tone (f3) placed 15.6 Hz below 2f1-f2. The level of f3 was varied in order to suppress the stimulus frequency otoacoustic emission (SFOAE) coming from the 2f1-f2 place. These data were converted from the complex frequency domain into an equivalent time representation using an inverse fast Fourier transform (IFFT). IFFTs of unsuppressed DPOAE data were characterized by two or more peaks. Relative amplitudes of these peaks depended on overall primary level and on primary-level differences. The suppressor eliminated later peaks, but early peaks remained relatively unaltered. Results are interpreted to mean that the DPOAE measured in humans includes components from the f2 place (intermodulation distortion) and DP place (in the form of a SFOAE). These findings build on previous work by providing evidence that multiple peaks in the IFFT are due to a secondary source at the DP place.  相似文献   

20.
The goal of this study was to determine the extent to which the variability seen in distortion product otoacoustic emissions (DPOAEs), among ears with normal hearing, could be accounted for. Several factors were selected for investigation, including behavioral threshold, differences in middle-ear transmission characteristics either in the forward or the reverse direction, and differences in contributions from the distortion and reflection sources. These variables were assessed after optimizing stimulus parameters for individual ears at each frequency. A multiple-linear regression was performed to identify whether the selected variables, either individually or in combination, explained significant portions of variability in DPOAE responses. Behavioral threshold at the f(2) frequency and behavioral threshold squared at that same frequency explained the largest amount of variability in DPOAE level, compared to the other variables. The combined model explained a small, but significant, amount of variance in DPOAE level at five frequencies. A large amount of residual variability remained, even at frequencies where the model accounted for significant amounts of variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号