首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of poly(diethylsiloxane) (PDES) has been characterized using solid-state NMR of (17)O. The sample studied had a weight-average molecular weight of 2.45 x 10(5). The sample was prepared by utilizing the cationic ring-opening polymerization of (17)O-enriched hexacyclotrisiloxane. Solid-state NMR of (17)O-enriched PDES was measured on the low-temperature beta(1) phase, the high-temperature beta(2) phase, the two-phase system consisting of the liquid crystal and isotropic liquid phase and the isotropic phase. From these data, the molecular structure and dynamics of PDES in the various phases were characterized via the chemical shifts of (17)O, and electric field gradient parameters were determined from NMR and ab initio molecular orbital (MO) calculations. In addition to the solid-state NMR of (1)H, (13)C and (29)Si previously reported on these samples, knowledge of the dynamic behavior of PDES as inferred from the NMR of (17)O in the present study was enhanced significantly. Further, the potential of combining the experimental NMR of (17)O with ab initio MO calculations to characterize the dynamics of polymers containing oxygen is demonstrated.  相似文献   

2.
Serre C  Férey G 《Inorganic chemistry》2001,40(21):5350-5353
Ti(O(3)P-(CH(2))(n)-PO(3)) or MIL-25(n) (n = 2, 3) were prepared under hydrothermal conditions (4 days, 463 K, autogenous pressure). Their structures were determined ab initio from X-ray diffraction powder data. MIL-25(2) is triclinic (space group P-1 (no. 2)), with a = 5.033(1), b = 5.092(1), c = 6.859(1) A, alpha = 95.860(1) degrees, beta = 99.994(1) degrees, gamma = 118.217(1) degrees, and Z = 2. MIL-25(3) exhibits an orthorhombic symmetry (space group Cm2m (no. 38)), with a = 5.230(1), b = 8.451(1), c = 17.400(2) A, and Z = 4. Their three-dimensional structures are built up from TiO(6) titanium(IV) octahedra linked together via diphosphonate groups. This leads to pillared structures whose inorganic sheets are closely related to those of the alphaTiP titanium phosphate structure.  相似文献   

3.
Synchrotron powder X-ray diffraction, ab initio molecular dynamics calculations and solid state (1)H and (2)H NMR are used to refine the structure of crystalline NH(4)BH(4) including H atoms. Rapid reorientations of both ions mean that on average half-hydrogens occupy the corners of a cube around B or N.  相似文献   

4.
Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag(2)S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl(2)-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag(2)Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a P2(1)/n phase has been found, which is a slight modification of the low-pressure structure (Co(2)Si-related structure). The initial monoclinic phase was fully recovered after decompression. Density functional and, in particular, GGA+U calculations present an overall good agreement with the experimental results in terms of the high-pressure sequence, cell parameters, and their evolution with pressure.  相似文献   

5.
The crystal structure of a new hybrid product comprised of two rigid building blocks, namely dirhodium(II) tetraacetate, [Rh(2)(O(2)CCH(3))(4)] (1), and 2,6-diselenaspiro[3.3]heptane, Se(2)C(5)H(8) (2), has been solved ab initio using laboratory source X-ray powder diffraction (XRPD) data. The rigid body refinement approach has been applied to assist in finding an adequate model and to reduce the number of the refined parameters. Complex [Rh(2)(O(2)CCH(3))(4).mu(2)-Se(2)C(5)H(8)-Se,Se'] (3) conforms to the triclinic unit cell with lattice parameters of a = 8.1357(4), b = 8.7736(4), and c = 15.2183(8) A, alpha = 77.417(3), beta = 88.837(3), and gamma = 69.276(4) degrees, V = 989.66(8) A(3), and Z = 2. The centrosymmetric P space group was selected for calculations. The final values of the reduced wR(p), R(p), and chi(2) were calculated at 0.0579, 0.0433, and 5.95, respectively. The structure of 3 is a one-dimensional zigzag polymer built on axial Rh...Se interactions at 2.632(6) A. The 2,6-diselenaspiro[3.3]heptane ligand acts as a bidentate linker bridging dirhodium units via both selenium atoms. The geometrical parameters of individual groups for rigid body refinement have been obtained from X-ray powder data for dirhodium(II) tetraacetate (1) and from single-crystal X-ray diffraction for diselenium molecule 2. The crystal structures of 1 and 2 are reported here for the first time. For 1 indexing based on XRPD data has resulted in the triclinic unit cell P with lattice parameters of a = 8.3392(7), b = 5.2216(5), and c = 7.5264(6) A, alpha = 95.547(10), beta = 78.101(6), and gamma = 104.714(13) degrees, V = 309.51(5) A(3), and Z = 1. The final values were wR(p) = 0.0452, R(p) = 0.0340, and chi(2) = 1.99. The 1D polymeric motif built on axial Rh.O interactions of the centrosymmetric dirhodium units has been confirmed for the solid-state structure of 1. Compound 2,6-diselenaspiro[3.3]heptane (2) conforms to the monoclinic space group P2(1)/c with the unit cell parameters of a = 5.9123(4), b = 19.6400(13), and c = 5.8877(4) A, beta = 108.5500(10) degrees, V = 648.15(8) A(3), and Z = 4.  相似文献   

6.
A new member of the aluminum hydride family, CaAlH5, is formed during the decomposition of Ca(AlH4)2. The crystal structure of this new compound was calculated by density functional theory band-structure calculations and confirmed by X-ray powder diffraction analysis. The structure crystallizes in space group P2(1)/n (No. 14), with a = 8.3797(9) angstroms, b = 6.9293(8) angstroms, c = 9.8138(11) angstroms, beta = 93.78(1) degrees, and Z = 8.  相似文献   

7.
Classical trajectories have been used to compute rates for the unimolecular reaction H2CN-->H+HCN on a fitted ab initio potential energy surface (PES). The ab initio energies were obtained from CCSD(T)/aug-cc-pvtz electronic structure calculations. The ab initio energies were fitted by the interpolating moving least-squares (IMLS) method. This work continues the development of the IMLS method for producing ab initio PESs for use in molecular dynamics simulations of many-atom systems. A dual-level scheme was used in which the preliminary selection of data points was done using a low-level theory and the points used for fitting the final PES were obtained at the desired higher level of theory. Classical trajectories were used on various low-level IMLS fits to tune the fit to the unimolecular reaction under study. Procedures for efficiently picking data points, selecting basis functions, and defining cutoff limits to exclude distant points were investigated. The accuracy of the fitted PES was assessed by comparing interpolated values of quantities to the corresponding ab initio values. With as little as 330 ab initio points classical trajectory rate constants were converged to 5%-10% and the rms error over the six-dimensional region sampled by the trajectories was a few tenths of a kcal/mol.  相似文献   

8.
The dehydration process of VOPO(4)·2H(2)O occurs in two steps corresponding to successive elimination of the two crystallographically distinct water molecules. The intermediate phase VOPO(4)·H(2)O has been stabilized for X-ray powder diffraction studies. The resulting data suggest a tetragonal cell (a = 6.2203(2) ? and c = 6.18867(7) ?), but an important anisotropy in the line broadening points out the necessity of considering a not perfectly organized structure. Because of the layered structure of this compound, density functional theory calculations including dispersion corrections have been carried out to evaluate the possible presence of stacking faults. The results of these calculations give information about the nature of the translations and their probabilities using a Boltzmann distribution. DIFFaX+ simulations of the X-ray powder diffraction pattern have been carried out using the results of the theoretical calculations and confirm the presence and nature of stacking faults.  相似文献   

9.
The gas-phase molecular structure of iodotrimethylsilane (ITMS) has been determined from electron diffraction data. Infrared and Raman spectra have been completely assigned. The experimental work is supported by ab initio HF and MP2 calculations for the gas-phase structure determination and DFT(B3LYP) calculations, combined with Pulay's SQM method, for the vibrational spectra data.  相似文献   

10.
The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are sufficiently large and free of imperfections is often laborious, time-consuming, and, occasionally, impossible. The feasibility of an integrated approach to the determination and verification of a complete three-dimensional structure for a medium-sized organic molecule without using single crystals is demonstrated for the case of an organic stabilizer compound N-(p-tolyl)-dodecylsulfonamide. The approach uses a combination of powder XRD data, several computational packages involving Monte Carlo simulations and ab initio quantum mechanical calculations, and experimental solid-state NMR chemical shifts. Structure elucidation of N-(p-tolyl)-dodecylsulfonamide revealed that the Bravais lattice is monoclinic, with cell dimensions of a = 38.773 A, b = 5.507 A, c = 9.509 A, and beta = 86.35 degrees, and a space group of P21/c.  相似文献   

11.
The conformational behaviour of divinyl ether in the gas phase was explored by infrared band profile simulations and joint analysis of electron diffraction and microwave data. At 300 K the rotameric mixture contains 80% [sp, ac] and 20% [ap, ap] forms. Geometries have been studied using constraints taken from ab initio 4-21G gradient geometry and force field calculations. Differences between some unresolved bond distances and angles were constrained to the calculated values. Scale factors for the ab initio force field were refined from the diffraction data. In addition the transferability of scale factors from methyl vinyl ether to divinyl ether was tested. The investigation demonstrates that molecular orbital constrained models are consistent with and rationalize all experimental gas phase results. Subject to the ab initio constraints, the analysis yields the following model (rg-distances, r-angles; numbers in parentheses are 6 times the least-squares ESDs): (C---H) = 1.103(12) A, (C---C) = 1.337(2) A, (C---O) = 1.389(2) A. Torsion angles for the [sp, ac] form are −13(6)° and 145(4)°.  相似文献   

12.
(V(III)(OH))(2)[C(6)H(2)(CO(2))(4)].4H(2)O (labeled MIL-60) and V(III)(OH)[(2)(O(2)C)C(6)H(2)(COOH)(2)].H(2)O (labeled MIL-61) were hydrothermally synthesized from mixtures of VCl(3), 1,2,4,5-benzenetetracarboxylic acid, and water heated for 3 days at 473 K. The structure of MIL-60 was solved from single-crystal X-ray diffraction data in the triclinic centrosymmetric P1 (No. 2) space group with lattice parameters a = 6.3758(5) A, b = 6.8840(5) A, c = 9.0254(5) A, alpha = 69.010(2) degrees, beta = 85.197(2) degrees, gamma = 79.452(2) degrees, V = 363.53(5) A(3), and Z = 1. The structure of MIL-61 was ab initio determined from an X-ray powder diffraction pattern. MIL-61 crystallizes in the Pnma (No. 62) orthorhombic space group with lattice parameters a = 14.8860(1) A, b = 6.9164(1) A, c = 10.6669(2) A, V = 1098.23(3) A(3), and Z = 4. Both structures contain the same inorganic building block that consists of trans chains of V(III)O(4)(OH)(2) octahedra. The three-dimensional frameworks of MIL-60 and MIL-61 are constituted by the linkage of these chains via the organic molecules so delimiting the channels or cages where the water molecules are encapsulated. The magnetic behavior of these two phases is presented: MIL-60 is paramagnetic, and MIL-61 antiferromagnetically orders below T(N) = 55(5) K.  相似文献   

13.
吴宏翔  马礼敦  孙杰  孔祥福 《化学学报》1998,56(12):1184-1191
总结了粉末衍射从头晶体结构测定中的问题与对策,并采用常规X射线粉末衍射数据,从头测定了配合物[Co(NH~3)~5Br]Br~2的晶体结构。在指标化与分峰基础上,采用直接法获得含7个独立非H原子的粗结构。在10°~80°(2θ)范围内用3500个强度数据对38个参数作Rietveld精修,得到了[Co(NH~3)~5Br]Br~2的晶体结构。其晶胞参数为a=1.3692(1)nm,b=1.0707(1)nm,c=0.6940(1)nm,V=1.0175(1)nm^3,Z=4。空间群:Pnma,品质因子:M~2~0=49,F~3~0=93(0.0075,43),结构吻合因子:R~p=0.066,R~w~p=0.090,R~F=0.041,R~B=0.042。  相似文献   

14.
Two new inorganic-organic polymeric hybrids [Sn(pcp)] and [Cu(pcp)], pcp=CH2(PhPO2)2(2-), have been synthesized and structurally characterized. The tin derivative has been obtained by reaction of the p,p'-diphenylmethylenediphosphinic acid (H2pcp) in water with SnCl2.2H2O, while the copper derivative has been synthesized through a hydrothermal reaction from the same H2pcp acid and Cu(O2CMe)2.H2O. The structures of these compounds have been solved "ab initio" by X-ray powder diffraction (XRPD) data. [Sn(pcp)] has a ladder-like polymeric structure, with tin(II) centers bridged by diphenylmethylenediphosphinate ligands, and alternating six- and eight-membered rings. The hemilectic coordination around the metal shows the tin(II) lone pair to be operative, resulting in significant interaction mainly with a C-C bond of one phenyl ring. The [Cu(pcp)] complex displays a polymeric columnar structure formed by two intersecting sinusoidal ribbons of copper(II) ions bridged by the bifunctional phosphinate ligands. The intersections of the ribbons are made of dimeric units of pentacoordinated copper ions. Crystal data for [Sn(pcp)]: monoclinic, space group P2(1)/c, a=11.2851(1), b=15.4495(6), c=8.6830(1) A, beta=107.546(1) degrees, V=1443.44(9) A, Z=4. Crystal data for [Cu(pcp)]: triclinic, space group P, a=10.7126(4), b=13.0719(4), c=4.9272(3) A, alpha=92.067(5), beta=95.902(7), gamma=87.847(4) degrees, V=685.47(7), Z=2. The tin compound has been characterized by 119Sn MAS NMR (magic-angle spinning NMR), revealing asymmetry in the valence electron cloud about tin. Low-temperature magnetic measurements of the copper compound have indicated the presence of weak antiferromagnetic interactions below 50 K.  相似文献   

15.
A series of carboxyethylphosphonate hybrid materials has been prepared: Mn(II)(O3PCH2CH2COOH) *H2O (1), Mn(III)(OH)(O3PCH2CH2COOH)*H2O (2), Al3(III)(OH)3(O3PCH2CH2CO2)2 *3H2O (3) and Cr2(III)(OH)3(O3PCH2CH2CO2) *3H2O (4). Compounds 1 and 2 were synthesized from Mn(III)(CH3COO)3 *2H2O under hydrothermal, or refluxing treatments, respectively. The crystal structures of the manganese-bearing solids have been solved ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. 1 crystallises in a orthorhombic cell and 2 in monoclinic symmetry. Both solids have inorganic 2D layered structures with the acid carboxylic groups pointing towards the interlayer space, and the layers linked only through hydrogen bonds. The inorganic layers of these compounds are formed by manganese atoms in distorted octahedral environments linked together by the phosphonate groups. The crystal structure of 3 has been solved ab initio from synchrotron X-ray powder diffraction data. This solid shows a pillared structure with the phosphonate and carboxylate groups cross-linking the inorganic layers. These layers contain chains of aluminium octahedra running parallel to each other. 4 is amorphous and the IR-UV-VIS spectra suggest a framework with Cr(III) cations in octahedral environments. Thermal, spectroscopic and magnetic data for manganese and chromium compounds as well as the structural details of these solids are discussed.  相似文献   

16.
The structure of [Co(gly)(2)(OH)(2)].1.5(H(2)O) was solved by X-ray diffraction. It crystallizes in the space group P-1, with two independent dimmers in the unit cell. The results for the calculated vibrational spectra are in good agreement with the experimental one. The infrared spectrum and ab initio calculations are consistent with the crystallographic results.  相似文献   

17.
High-resolution neutron powder diffraction is particularly suited for structure solution and refinement of low-melting point organic crystals of moderate complexity. Here we present the ab initio structure solution and refinement of stable-phase and metastable-phase perdeuterated acetaldehyde (m.p.: 151 K). In the stable phase, the molecule crystallises in the space group P21/c (no. 14) with a=3.9069(1) Å, b=5.4224(1) Å, c=12.1868(1) Å, β=94.2970(2)° at 5 K, Z=4. In the metastable phase, the molecule crystallises in the space group Pna21 (no. 33) with a=5.1973(1) Å, b=6.9791(1) Å, c=6.9712(1) Å at 5 K, Z=4. The metastable to stable phase transition is characterised by heat capacity measurements.  相似文献   

18.
A theoretical analysis of the temperature-dependent (31)P NMR signals for the ambient pressure vanadyl pyrophosphate AP-(VO)(2)P(2)O(7) and the oxovanadium hemihydrate hydrogenophosphate VO(HPO(4)).0.5H(2)O phases is reported. The ab initio calculation of the magnetic exchange parameters and the hyperfine constants gives access to an original ab initio simulation of NMR spectra. Such a strategy allows one to clarify the crystallographic nature of the different experimentally studied phases. For the vanadyl pyrophosphate ambient pressure structure, our simulations strongly support the presence of a monoclinic phase. Based on this assumption, hyperfine constants are extracted from the fit of the experimental data. These values are directly compared to the ab initio ones.  相似文献   

19.
The crystal structure of BiPb2VO6 has been determined from powder diffraction data using a combination of direct methods and the novel approach of applying simulated annealing methods simultaneously to X-ray and neutron data; BiPb2VO6 is a polar, noncentrosymmetric, second harmonic generation active material and its crystal structure is one of the more complex to be solved ab initio from powder diffraction data.  相似文献   

20.
A three-component molecular cocrystal material has been prepared by a solvent-free route involving mechanical grinding of the pure phases of the individual components. This material is not accessible from conventional solution-state crystallization procedures. Due to the fact that the grinding procedure intrinsically leads to a microcrystalline powder sample, the use of powder X-ray diffraction data is essential for structure determination. This work emphasizes the scope and utility of ab initio structure solution directly from powder X-ray diffraction data for carrying out structural characterization of new materials prepared via the solid-state grinding route, leading to the opportunity to establish structure-property relationships for such materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号