首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We report an efficient laser emission on the 1066 nm 4 F 3/2 to 4 I 11/2 transition in Nd:LuVO4 under the pump with diode laser at 888 nm. Continuous wave (CW) 11.2 W output power at 1066 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 71.9%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 4.2 W of green light at 533 nm. An optical-to-optical efficiency with respect to the incident pump power was 23.0%.  相似文献   

2.
We report a yellow-green laser at 544.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1089 nm Nd:LuVO4 laser under in-band diode pumping at 888 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 17.9 W, as high as 3.81 W of CW output power at 544.5 nm is achieved. The optical-to-optical conversion efficiency is up to 21.3%, and the fluctuation of the yellow-green output power was better than 3.7% in the given 4 h.  相似文献   

3.
We report the efficient blue laser at 458 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser on the 4 F 3/24 I 9/2 transition at 916 nm. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.73 W of continuous wave (CW) output power at 458 nm is achieved. The optical-to-optical conversion efficiency is up to 9.5%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

4.
We report an efficient laser emission on the 912 nm 4 F 3/2 to 4 I 9/2 transition in Nd:GdVO4 under the pump with diode lasers at 888 nm. Continuous wave (CW) 4.91 W output power at 912 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 57.5%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.33 W of deep-blue light at 456 nm.  相似文献   

5.
We report a red laser at 670.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1341 nm Nd:GdVO4 laser under in-band diode pumping at 912 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 8.9 W, as high as 347 mW of CW output power at 670.5 nm is achieved. The fluctuation of the red output power was better than 3.7% in the given 30 min, and the beam quality factor M 2 is 1.65.  相似文献   

6.
We report a green laser at 532 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1064 nm Nd:Y0.36Gd0.64VO4 laser under in-band diode pumping at 880 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.92 W of CW output power at 532 nm is achieved. The optical-to-optical conversion efficiency is up to 16.4%, and the fluctuation of the green output power was better than 2.5% in the given 30 min.  相似文献   

7.
We report a red laser at 671 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1342 nm Nd:Y0.36Gd0.64VO4 laser under diode pumping into the emitting level 4 F 3/2. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 1.12 W of cw output power at 671 nm is achieved. The optical-to-optical conversion efficiency is up to 6.3%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

8.
We report efficient laser emission on the 914 nm 4 F 3/2 to 4 I 9/2 transition in Nd:YVO4 under the pump with diode lasers at 888 nm for the first time. Continuous wave 6.57 W output power at 914 nm is obtained from a V-type resonator under 18.3 W of absorbed pump power; the slope efficiency with respect to the absorbed pump power was 60.6%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.77 W of deep-blue light at 457 nm with beam quality characterized by an M2 factor of 1.25.  相似文献   

9.
W. M. Liu  J. A. Zhang 《Laser Physics》2011,21(10):1717-1720
We report an efficient laser emission on the 1341 nm 4 F 3/2 to 4 I 13/2 transition in Nd:GdVO4 under the pump with diode lasers at 888 nm. Continuous wave (CW) 6.58 W output power at 1341 nm is obtained under 18.3 W of incident pump power; the slope efficiency with respect to the incident pump power was 45.1%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 1.77 W of red light at 670.5 nm.  相似文献   

10.
We report a continuous-wave (CW) coherent green radiation at 533 nm by intracavity frequency doubling generation of 1066 nm Nd:LuVO4 laser. With incident pump power of 18.2 W, output power of 4.3 W at 533 nm has been obtained using a 5 mm-long LBO crystal. The optical conversion efficiency was up to 23.6%. At the output power level of 4.3 W, the output stability is better than 3%. The beam quality M2 values were equal to 1.13 and 1.21 in X and Y directions, respectively.  相似文献   

11.
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in two Nd:LuVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a yellow laser at 590 nm is obtained by 1066 and 1321 nm intracavity sum-frequency mixing. The maximum laser output power of 223 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 223 mW, the output stability is better than 4.5%.  相似文献   

12.
We report for the first time a efficient compact red laser at 671.5 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:LuVO4 laser on the 4 F 3/24 I 13/2 transition at 1343 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 4.3 W of continuous wave output power at 671.5 nm is achieved with 10-mm-long LBO. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

13.
A Nd:YVO4 crystal was pumped directly into the emitting level by a laser diode at 914 nm. We achieved an output power of 1.46 W at 1342 nm for an incident pump power of 18.3 W, corresponding to an optical-to-optical conversion efficiency of 8.0%. The fluctuation of the output power was better than 2.3% in the given 30 min. The beam quality M2 factor value was equal to 1.15 at the maximum output power.  相似文献   

14.
A study of Yb:GdCOB under diode-bar pumping has been performed and the results are compared, experimentally and theoretically, with Yb:KGW in the same cavity. An output power of 7.3 W and a slope efficiency of 57.4% were obtained. Self-frequency-doubling experiments are also discussed.  相似文献   

15.
We report for the first time a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:LuVO4 crystal. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 493 nm is obtained by 1066 and 916 nm intracavity sum-frequency mixing. The maximum laser output power of 520 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 520 mW, the output stability is better than 2.8%. The beam quality M 2 value is are about 1.22 and 1.31 in both horizontal and vertical dimensions respectively.  相似文献   

16.
Efficient and compact green-yellow laser output at 545 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:LuVO4 laser at 1089 nm under the condition of suppressing the higher gain transition near 1066 nm. With 18.7 W of diode pump power and the frequency-doubling crystal KTiOPO4(KTP), as high as 2.3 W of CW output power at 545 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 12.3%; the output power stability over 4 h is better than 5.4%.  相似文献   

17.
J. Gao  X. Yu  B. Wei  X. D. Wu 《Laser Physics》2010,20(7):1590-1593
We present experimental investigation on quasi-three-level Nd:YVO4 laser operation at 914 nm under 879 nm diode pumping directly into emitting level. A maximal output power of 3.0 W under an absorbed pump power of 13.4 W was got, corresponding to an optical conversion efficiency of 22.4% and a slope efficiency of 40.3%. To the best of our knowledge, this is the first report on a Nd:YVO4 laser at 914 nm using rod-type single crystal as the gain medium and end pumped by diode directly into the emitting level.  相似文献   

18.
We report an efficient intracavity second-harmonic generation (SHG) at 1066 nm in a non-linear optical crystal, GdCa4O(BO3)3 (GdCOB), performed with a diode end pumped continuous-wave (CW) Nd:LuVO4 laser. In the case of a laser with a Nd:LuVO4 crystal frequency-doubled with a GdCOB crystal cut for type I frequency doubling. A CW SHG output power of 5.18 W has been obtained using a 10 mm long GCOB crystal. The optical conversion efficiency with respect to the incident pump power was 28.5%.  相似文献   

19.
A high-power diode -pumped Nd3+:YAl3(BO3)4 (Nd:YAB) laser emitting at 1338 nm is described. At the incident pump power of 9.8 W, as high as 734 mW of continuous-wave (CW) output power at 1338 nm is achieved. The slope efficiency with respect to the incident pump power was 9.0%. To the best of our knowledge, this is the first demonstration of such a laser system. The output power stability over 60 min is better than 2.6%. The laser beam quality M 2 factor is 1.21.  相似文献   

20.
We report on a high-power diode-end-pumped self-mode-locked Nd:LuVO4 laser with the pulse repetition rate up to 9.52 GHz for the first time. The large third-order nonlinearity of the Nd:LuVO4 crystal is exploited to efficiently achieve a fairly stable self-mode-locked operation without any additional components. The detailed characteristics of the compact efficient self-mode-locked laser are experimentally investigated and theoretically analyzed. With the incident pump power of 2.6 W, the average output power up to 0.54 W is generated with the pulse width of 7.9 ps at the pulse repetition rate of 9.52 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号