首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在pH值为2.5~3.5的Britton - Robinson缓冲溶液中,泛昔洛韦与钯(Ⅱ)相互作用形成1∶1的螯合阳离子,并进一步与铬天青S反应形成1∶1的离子缔合物.该反应可引起共振瑞利散射(RRS)光谱的显著增强并产生新的RRS光谱,最大RRS波长位于367 nm.在一定范围内,共振瑞利散射增强(△IRRS)与泛昔洛韦的质量浓度成正比,其线性范围为0.02~2.4 mg/L.该方法的灵敏度高,对泛昔洛韦的检出限为3.6μg/L.实验考察了适宜的反应条件以及共存物质的影响.应用计算化学软件Gaussview3.07和Gaussian03W,采用密度泛函法,在B3 LYP/6 -31G基组水平上计算了泛昔洛韦的电荷分布,对反应机理和RRS增强的原因进行了讨论.基于Pd(Ⅱ)-泛昔洛韦-铬天青S体系三元离子缔合物的RRS光谱,发展了一种简便、快速、灵敏测定泛昔洛韦的新方法.此方法用于胶囊和尿样中泛昔洛韦的测定,结果满意.  相似文献   

2.
在pH值为2.5~3.5的Britton-Robinson缓冲溶液中,泛昔洛韦与钯(Ⅱ)相互作用形成1∶1的螯合阳离子,并进一步与铬天青S反应形成1∶1的离子缔合物。该反应可引起共振瑞利散射(RRS)光谱的显著增强并产生新的RRS光谱,最大RRS波长位于367 nm。在一定范围内,共振瑞利散射增强(ΔIRRS)与泛昔洛韦的质量浓度成正比,其线性范围为0.02~2.4 mg/L。该方法的灵敏度高,对泛昔洛韦的检出限为3.6μg/L。实验考察了适宜的反应条件以及共存物质的影响。应用计算化学软件Gaussview3.07和Gaussian03W,采用密度泛函法,在B3LYP/6-31G基组水平上计算了泛昔洛韦的电荷分布,对反应机理和RRS增强的原因进行了讨论。基于Pd(Ⅱ)-泛昔洛韦-铬天青S体系三元离子缔合物的RRS光谱,发展了一种简便、快速、灵敏测定泛昔洛韦的新方法。此方法用于胶囊和尿样中泛昔洛韦的测定,结果满意。  相似文献   

3.
在pH为5.0-5.4的乙酸-乙酸钠缓冲溶液中,克林霉素(Clin)与钯(Ⅱ)形成螯合阳离子,它能进一步与二碘荧光素(DIF),赤藓红(Ery),曙红Y(EY)等卤代荧光素类染料反应形成1:1:1的三元离子缔合物,此时将引起吸收光谱变化和荧光猝灭,同时还导致共振瑞利散射(RRS)的急剧增强并产生新的RRS光谱,钯(Ⅱ)-克林霉素与DIF,Ery和EY形成产物的最大散射波长分别位于285,287,32 1nm处,另外还有些较弱的散射峰存在。散射增强(ΔI)与克林霉素浓度在一定范围内成正比,可用于克林霉素的定量测定。对于DIF,Ery和EY体系的线性范围和检出限分别为0.025-2.1μg•mL-1和7.8 ng•mL-1,0.053-2.4μg•mL-1和16.0 ng•mL-1;以及0.038-2.4μg•mL-1和11.0 ng•mL-1。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性,基于三元离子缔合物的RRS光谱,发展了一种高灵敏、简便快速测定克林霉素的新方法。文中还对离子缔合物的组成,结构和反应机理,以及离子缔合物对吸收,荧光和RRS光谱的影响进行了讨论。  相似文献   

4.
在pH值为0.65~1.10的HCl-NaAc缓冲溶液中,同多钨酸(IPT)与阿米卡星(AMK)形成离子缔合物,能引起共振瑞利散射(RRS)显著增强,并产生新的RRS光谱,其最大散射峰位于340 nm,AMK质量浓度在1.0×10-9~8.0×10-8 g/mL范围内与散射增强程度呈线性关系. 建立了测定AMK的RRS新方法,检出限(3σ)为0.4×10-9 g/mL. 考察了体系的RRS和吸收光谱特征,优化了测定条件,考察了常见共存物质的干扰,方法具有良好的选择性. 用于人血清中AMK的测定,结果满意. 讨论了离子缔合反应和RRS增强机理.  相似文献   

5.
在pH 4.2~4.8的B-R缓冲介质中,莫西沙星(MXFX)和加替沙星(GTF)等氟喹诺酮类抗生素(FLQs)能与铜(Ⅱ)形成螯合阳离子,进一步与虎红(Tf)阴离子通过静电引力和疏水作用形成FLQs∶Cu(Ⅱ)∶Tf为1∶1∶1的离子缔合物,体系反应导致共振瑞利散射(RRS)显著增强并出现新的RRS光谱.两种药物的反应产物具有相似的光谱特征,最大RRS峰位于373 nm处,并在590 nm处有1个较小的散射峰.在373 nm处一定浓度的抗生素与散射增强(△I)成正比,MXFX和GTF的线性范围分别为0.031 ~7.8 mg/L和0.029~9.0 mg/L.据此建立了测定氟喹诺酮类药物的新方法,方法用于胶囊和人尿液中FLQs的测定并取得满意结果.同时对反应机理及RRS增强原因进行了讨论.  相似文献   

6.
在pH 4.2~4.8的B-R缓冲介质中,莫西沙星(MXFX)和加替沙星(GTF)等氟喹诺酮类抗生素(FLQs)能与铜(Ⅱ)形成螯合阳离子,进一步与虎红(Tf)阴离子通过静电引力和疏水作用形成FLQs∶Cu(Ⅱ)∶Tf为1∶1∶1的离子缔合物,体系反应导致共振瑞利散射(RRS)显著增强并出现新的RRS光谱。两种药物的反应产物具有相似的光谱特征,最大RRS峰位于373 nm处,并在590 nm处有1个较小的散射峰。在373 nm处一定浓度的抗生素与散射增强(ΔI)成正比,MXFX和GTF的线性范围分别为0.031~7.8 mg/L和0.029~9.0 mg/L。据此建立了测定氟喹诺酮类药物的新方法,方法用于胶囊和人尿液中FLQs的测定并取得满意结果。同时对反应机理及RRS增强原因进行了讨论。  相似文献   

7.
在pH 4.5的Britton-Robinson(BR)缓冲溶液中, 赤藓红(ET)与苯海拉明(DP)形成1: 1的离子缔合物, 不仅引起吸收光谱的变化和荧光猝灭, 更导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱, 最大RRS峰位于580 nm附近. 研究了反应产物的吸收、荧光和RRS光谱特征, 适宜的反应条件及分析化学性质, 据此发展了以赤藓红为光谱探针的灵敏、简便、快速测定DP的新方法. RRS法、分光光度法和荧光猝灭法对DP的检出限依次为0.0020, 0.088和0.094 μg/mL, 线性范围分别是0.0067 ~ 2.0, 0.29 ~ 6.4和0.31~3.2 μg/mL. 研究了苯海拉明与赤藓红相互作用对吸收、荧光和RRS光谱的影响. 散射光偏振实验显示结合产物在最大散射波长处的偏振度为0.9779, 表明DP-ET体系的共振散射光谱主要由散射光构成, 基本不含共振荧光成分. 还采用量子化学AM1法计算了反应前后生成焓和平均极化率的变化, 讨论了RRS光谱产生及增强的原因及光吸收、荧光和RRS之间的能量转换关系.  相似文献   

8.
在pH 3.0~5.0的HAc-NaAc缓冲溶液中, 盐酸氯丙嗪与十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)和十二烷基磺酸钠(SLS)等阴离子表面活性剂反应形成离子缔合物时, 能导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱, 最大RRS峰分别位于277, 369和277 nm处, 方法对SDBS, SDS和SLS的检出限分别为0.018, 0.046和0.200 μg/mL, 其线性范围分别为0.09~10.0, 0.15~15.0 和0.67~12.5 μg/mL. 研究了适宜的反应条件及分析化学性质, 提出了一种用RRS技术灵敏、简便并快速测定阴离子表面活性剂的新方法.  相似文献   

9.
提出了共振瑞利光散射法测定氟罗沙星的新方法。在pH5.3~5.6的Britton-Robinson缓冲溶液中,氟罗沙星(FLE)与钴(II)能形成螯合阳离子,它可进一步与刚果红(CR)反应形成2∶1∶1(FLE∶Co2+∶CR)三元离子缔合物,导致共振瑞利散射(RRS)显著增强并出现新的RRS光谱,其最大散射波长分别位于372和560nm。在372nm处,氟罗沙星的浓度在0.03~3.69μg/mL范围内,与RRS强度有良好的线性关系,检出限(3σ)为6.0ng/mL。方法用于片剂、尿液和人血清中氟罗沙星的测定。  相似文献   

10.
江珊珊  刘忠芳  胡小莉  刘绍璞  王剑 《化学学报》2009,67(14):1635-1642
在pH 2.9~4.6 Britton-Robinson (BR)缓冲溶液中, 秋水仙碱的水解产物(H-COL)能与溴酚蓝(BPB)、溴甲酚绿(BCG)、溴百里酚蓝(BTB)和百里酚蓝(TB)等酸性磺酞类染料(ASPD)反应形成1∶1的离子缔合物, 此时将引起共振瑞利散射(RRS)的急剧增强, 并产生新的RRS光谱. 秋水仙碱水解产物与溴酚蓝、溴甲酚绿、溴百里酚蓝和百里酚蓝形成离子缔合物的最大散射波长分别位于327, 311, 305和306 nm处. 散射增强(ΔI)与秋水仙碱浓度在一定范围内成正比, 不同体系对于秋水仙碱的检出限(3σ)分别为12.3, 15.1, 16.4和20.0 ng•mL-1 (TB). 研究了适宜的反应条件, 考察了共存物质的影响, 表明方法有较好的选择性. 基于秋水仙碱水解产物与酸性磺酞类染料离子缔合物的反应, 发展了一种较灵敏, 且简便、快捷测定秋水仙碱的新方法. 方法用于片剂、黄花、血清和尿样中秋水仙碱的测定, 获得了满意的结果.  相似文献   

11.
在pH 0.65~1.10的HCl-NaAc缓冲溶液中,当同多钨酸(IPT)与阿米卡星(AMK)形成离子缔合物,能引起共振瑞利散射 (RRS)显著增强,并产生新的RRS光谱,其最大散射峰位于340 nm,AMK浓度在0.001~0.08 µg•mL-1范围内与散射增强程度呈线性关系,据此建立测定AMK的RRS新方法。方法具有较高的灵敏度,检出限(3σ)为0.4 ng•mL-1。考察了体系的RRS和吸收光谱特征,优化了适宜的反应条件,试验了常见共存物质的影响,表明方法具有良好的选择性。方法用于人血清中AMK的测定,结果满意。文中对离子缔合反应机理和RRS增强的原因进行了讨论。  相似文献   

12.
硫酸皮肤素的共振瑞利散射法测定   总被引:2,自引:0,他引:2  
研究了硫酸皮肤素对十六烷基三甲基溴化铵(CTMAB)发生缔合反应的条件、共振瑞利散射特征.结果表明,在pH 5.8的BR缓冲溶液中,硫酸皮肤素能与CTMAB形成离子缔合物,使共振瑞利散射RRS急剧增强并产生新的RRS光谱.硫酸皮肤素浓度在0.04~4.0μg/mL之间与散射强度呈线性关系,方法检出限(3σ)为13 ng/mL,并以CTMAB体系为例研究了共存物质的影响,表明方法选择性好.  相似文献   

13.
在pH4.5~7.0的Britton-Robinson(BR)缓冲溶液中,呋塞米(FUR)与Pd(Ⅱ)形成1:1的螯合阴离子,它能进一步与乙基紫(EV)、结晶紫(CV)、甲基绿(MeG)、亮绿(BG)、甲基紫(MV)等碱性三苯甲烷染料(BTPMD)阳离子通过静电引力和疏水作用形成FUR:Pd(II):BTPMD为1:1:1的离子缔合物.此时,该离子缔合反应不仅能引起吸收光谱的变化,而且更能导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)的显著增强,其最大RRS波长分别位于324nm(EV,CV和MV体系)和340nm(BG和MeG体系),最大SOS波长分别位于550nm(EV,CV,BG和MeG体系)和530nm(MV体系),而最大FDS波长均位于392nm附近.在一定条件下三种散射增强(ΔIRRS,ΔISOS和ΔIFDS)均与呋塞米(FUR)的浓度成正比.对不同染料体系,三种方法对FUR的检出限分别在0.3~4.9ng/mL(RRS),3.2~33.1ng/mL(SOS)和9.0~85.7ng/mL(FDS)之间,均可用于痕量FUR的测定.本文研究了三元离子缔合物的形成对吸收,RRS,SOS和FDS光谱特征和强度的影响,考察了适宜的反应条件、影响因素和分析化学性质,并以RRS法为例考察了共存物质的影响.据此提出了一种高灵敏度、简便、快速测定FUR的共振光散射新方法,将其用于片剂、注射液、人血清和尿样中FUR的测定,结果满意.文中还对三元离子缔合物的组成、结构和反应机理进行了讨论.  相似文献   

14.
在pH 3.2的邻苯二甲酸氢钾-HCl缓冲液中,酸性铬兰K(ACBK)-OP与牛血清白蛋白(BSA)形成三元离子缔合物,导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)的显著增强,光谱最大散射波长分别位于420,678和340nm。体系的光散射强度与BSA浓度在一定范围内呈线性增强,RRS在0~3.5 mg/L,SOS在0~3 mg/L,FDS在0~3 mg/L范围内对BSA的检出限分别为0.3,0.7和0.8μg/L,据此建立了测定BSA的共振线性(RRS)和共振非线性光散射(RNLS)分析法。以RRS法考察了酸性铬兰K-OP与白蛋白形成三元缔合物的适宜条件、影响因素等。方法可用于合成样品及血清样品中蛋白含量的测定。  相似文献   

15.
建立了一种快速测定药物中乌拉地尔的高灵敏共振瑞利散射(RRS)法,研究了RRS的光谱特征、反应条件及共存物质的影响。在p H 3.38的Tris-盐酸介质中,乌拉地尔与溴代十六烷基吡啶-偶氮氯膦Ⅲ反应生成三元离子缔合物,导致共振瑞利散射显著增强并产生新的RRS光谱。在最大共振瑞利散射峰374 nm波长处,乌拉地尔在0.002~0.37 mg/L范围内与缔合物的RRS增强强度的绝对值(│△IRRS│)呈线性关系,检出限为0.0016 mg/L。该法用于药物中乌拉地尔含量的测定,加标回收率为99.0%~99.7%,相对标准偏差(n=5)为1.6%~2.0%。  相似文献   

16.
在pH值为4.2~4.4的HAc-NaAc介质中,盐酸吗啉胍(ABOB)与Pd(Ⅱ)反应形成螯合阳离子[Pd(ABOB)2]2+,它能进一步与曙红Y(EY)、赤藓红(Ery)和二溴荧光素(DBF)阴离子形成离子缔合物,此时将引起共振瑞利散射(RRS)的急剧增强并产生新的RRS光谱。 盐酸吗啉胍与Pd(Ⅱ)和3种染料反应后的产物具有相似的光谱特征,最大RRS波长位于315 nm附近。 在一定条件下散射增强(ΔI)与ABOB浓度成正比,EY、Ery和DBF这3个体系的线性范围分别为0.012×10-6~1.2×10-6 g/mL、0.23×10-6~2.3×10-6 g/mL和0.24×10-6~1.5×10-6 g/mL。 方法具有较高的灵敏度,对于ABOB的检出限依次为0.003 6×10-6、0.070×10-6和0.025×10-6 g/mL,其中以EY体系灵敏度最高,其次是DBF和Ery。 研究了适宜的反应条件和影响因素,表明本方法具有良好的选择性,并以EY体系为例考察了共存物质的影响。 据此建立以曙红Y作探针,用RRS技术快速、简便,高灵敏测定ABOB的新方法。 文中还对离子缔合物的形成和反应机理进行了讨论。  相似文献   

17.
在磷酸盐缓冲介质中,PVA-124存在下,当银与邻菲罗啉(phen)形成配阳离子,并进一步分别与溴酚蓝(BPB)、溴甲酚绿(BCG)和溴甲酚紫(BCP)3种酸性三苯甲烷染料(TPMD)反应形成离子缔合物时,共振瑞利散射(RRS)强度急剧增强并产生相应的散射光谱。研究了离子缔合物的共振散射光谱特性以及适宜的反应条件。Ag+质量浓度在9.6×10-3~0.60μg/mL(BPB体系)、4.5×10-3~1.00μg/mL(BCG体系)和2.4×10-3~0.40μg/mL(BCP体系)范围内与RRS增强程度呈良好的线性关系。方法具有较高的灵敏度,不同染料体系的检出限在0.72~1.60 ng/mL。方法用于环境样品中痕量银的测定,结果满意。  相似文献   

18.
在pH3.5的HAc-NaAc缓冲介质中,盐酸二甲双胍(MFH)与Pd(Ⅱ)形成阳离子螯合物,它能进一步与酸性染料曙红Y(EY)的阴离子反应,形成离子缔合物。三元离子缔合物的生成将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)光谱显著增强,其最大散射波长分别位于292、540和327 nm。在一定范围内,三种散射信号的增强(ΔI_(RRS),ΔI_(SOS)和ΔI_(FDS))均与MFH的浓度呈线性关系。方法具有较高的灵敏度,RRS、SOS和FDS法对MFH的检出限(3σ)分别为1.7、13.2和22.7 ng·m L-1。考察了适宜的反应条件和共存物质的影响,结果表明该方法选择性良好。探讨了缔合物生成及散射增强的机理。据此,提出了简便、快速、准确且高灵敏度的测定痕量MFH的光散射新方法,并应用于片剂和尿样中MFH的测定,结果满意。  相似文献   

19.
在pH为9.0的Clark-Lubs缓冲溶液中, 强力霉素、土霉素、四环素和金霉素等四环素类抗生素与钨酸钠反应形成1∶1的阴离子螯合物, 它仅能引起吸收光谱的变化, 不能引起共振瑞利散射(RRS)的增强, 但是当该螯合物进一步与乙基紫反应形成三元离子缔合物时, RRS显著增强并产生新的RRS光谱, 它们具有相似的光谱特征, 最大RRS波长均位于328 nm处. 4种抗生素的线性范围和检出限分别为0.047~4.8 μg•mL-1和14.1 ng•mL-1(强力霉素); 0.078~5.0 μg•mL-1和23.5 ng•mL-1(土霉素); 0.081~5.7 μg•mL-1和24.4 ng•mL-1(四环素); 0.122~7.7 μg•mL-1和36.6 ng•mL-1(金霉素). 考察了三元离子缔合配合物的组成, 讨论了配合物的结构和反应机理, 并发展了一种高灵敏、简便快速测定四环素类抗生素的新方法.  相似文献   

20.
在Britton-Robinson (B-R)缓冲溶液中, 利福霉素类药物与ctDNA反应的适宜的pH范围是1.9~2.1. 此类药物本身有微弱RRS峰, 它们具有相似的光谱特征, 其散射峰均在290和370 nm附近; 而ctDNA的RRS峰在310 nm处. 两者反应形成结合产物后其RRS明显增强, 并在375 nm左右出现最大散射峰, 且有不同程度的红移和散射增强, 说明两者结合成新的产物; 加入Cu2+离子后, Cu2+与利福霉素抗生素及DNA形成三元复合物, 此时将导致RRS进一步剧增, 而且RRS光谱增强值与DNA浓度呈正比, 因而可用于DNA测定具有较高的灵敏度, 实验对ctDNA的检出限为9.7 ng/mL (RFSV-Cu2+- ctDNA体系). 文中研究了三元配合物反应的适宜条件和影响因素, 基于此反应发展了一种用RRS技术测定DNA的新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号