首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The (13)C and (15)N CPMAS NMR spectra of 18 pyrazoles substituted at position 1 by dinitrophenyl and trinitrophenyl (picryl) groups have been recorded. To help in the assignments, some of these compounds were studied in DMSO-d(6) solution. Phenomena such as the conformation of the N-aryl groups and broadening of splittings due to quadrupolar nuclei are discussed.  相似文献   

2.
Solid‐state cross‐polarization magic angle spinning 13C, 77Se and 15N NMR spectra were recorded for 1,3‐imidazolidine‐2‐selenone, its N‐substituted derivatives and some related compounds. The spinning sideband manifold intensities were used to obtain principal values of 13C and 77Se chemical shift tensors. Large selenium chemical shift anisotropies were observed for these selenones. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
1H, 13C and 15N NMR spectra of eight 2-amino-N'-(aryl)-benzamidines and of the parent compound were recorded, and unequivocal chemical shift assignments through the use of COSY, 1H-J resolved, HETCOR and COLOC sequences were performed. 1H and 13C chemical shifts for the nuclei of the benzamidine aromatic ring were not affected by the substituents present at N'-phenyl group, while the substituent effects in the chemical shifts of the same nuclei of N'-phenyl ring were very similar to the ones reported for the corresponding monosubstituted benzenes, indicating that there is no interaction between the two aromatic rings. 15N NMR spectra (DEPT sequence) show just two hydrogenated nitrogen atoms, which confirm that the amino form is the most stable tautomer, but the observation of a sharp signal and two broad signals (15N decoupled spectra), and the corresponding broad signal for the =C-NH(2) protons (in the 1H spectra), indicates the occurrence of tautomerism between the amino and imino forms, observable for some of the studied benzamidines. Theoretical calculations lead to the conclusion that these compounds occur mostly as the amino tautomer with Z configuration, which is stabilized by hydrogen bonding.  相似文献   

4.
Fast data collection: a general method for dual data acquisition of multidimensional magic-angle spinning solid-state NMR experiments is presented. The method uses a simultaneous Hartmann-Hahn cross-polarization from (1)H to (13)C and (15)N nuclei and exploits the long-living (15)N polarization for parallel acquisition of two multidimensional experiments.  相似文献   

5.
Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.  相似文献   

6.
NMR spectra of (14)N (spin I=1) are obtained by indirect detection in powders spinning at the magic angle. The method relies on the transfer of coherence from a neighboring "spy" nucleus with S=1/2, such as (13)C or (1)H, to single- or double-quantum transitions of (14)N nuclei. The transfer of coherence can occur through a combination of scalar and residual dipolar splittings (RDS); the latter are also known as second-order quadrupole-dipole cross terms. The two-dimensional NMR spectra reveal powder patterns determined by second- and third-order quadrupolar couplings. These spectra depend on the quadrupolar coupling constant C(Q) (typically a few megahertz), on the asymmetry parameter eta(Q) of the (14)N nucleus, and on the orientation of the internuclear vector r(IS) between the I ((14)N) and S (spy) nuclei with respect to the quadrupolar tensor. These parameters, which can be subject to motional averaging, can reveal valuable information about the structure and dynamics of nitrogen-containing solids. Application of this technique to various amino acids, either enriched in (13)C or with natural carbon isotope abundance, with spectra recorded at various magnetic fields, illustrates the scope of the method.  相似文献   

7.
Two-dimensional NMR spectra correlating both (1)H and (19)F nuclei with either (13)C or (15)N, are recorded at the same time, using a 600-MHz broadband radio frequency probe feeding independent (1)H and (19)F receiver channels. This technique, known as parallel acquisition NMR spectroscopy (PANSY), speeds up multidimensional NMR and is compatible with other fast-acquisition schemes. The method is illustrated with single-bond (HSQC) and multiple-bond (HMBC) experiments on 2-bromophenyl-3-trifluoromethyl-5-methylpyrazole, giving simultaneous (1)H-X and (19)F-X correlation spectra (X = (13) C or (15)N).  相似文献   

8.
Natural abundance solid‐state multinuclear (13C, 15N and 29Si) cross‐polarization magic‐angle‐spinning NMR was used to study structures of three block copolymers based on polyamide and dimethylsiloxane and two polyamides, one of which including ferrocene in its structure. Assignment of most of the resonance lines in 13C, 15N and 29Si cross‐polarization magic‐angle‐spinning NMR spectra were suggested. A comparative analysis of 13C isotropic chemical shifts of polyamides with and without ferrocene has revealed a systematic shift towards higher δ ‐values (de‐shielding) explained as the incorporation of paramagnetic ferrocene into the polyamide backbone. In addition, the 13C NMR resonance lines for ferrocene‐based polyamide were significantly broadened, because of paramagnetic effects from ferrocene incorporated in the structure of this polyamide polymer. Single resonance lines with chemical shifts ranging from 88.1 to 91.5 ppm were observed for 15N sites in all of studied polyamide samples. 29Si chemical shifts were found to be around ?22.4 ppm in polydimethylsiloxane samples that falls in the range of chemical shifts for alkylsiloxane compounds. The CO2 capture performance of polyamide‐dimethylsiloxane‐based block copolymers was measured as a function of temperature and pressure. The data revealed that these polymeric materials have potential to uptake CO2 (up to 9.6 cm3 g?1) at ambient pressures and in the temperature interval 30–40 °C. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Molecular dynamics and structure of uncured and cured melamine-formaldehyde resins isotopically 15N enriched at amine sites were studied by solid-state 15N nuclear magnetic resonance (NMR). Spectra recorded with direct (DP) and cross-polarization (CP) pulse sequences reflect two motionally different regions arising from similar chemical structures. DP spectra of uncured resins at higher temperatures have narrow lines and the detection of slightly different structural units is possible. With increasing crosslinking resonances broaden and overlap and the direct detection of individual signals in cured resins is not possible. On the basis of variable contact time, variable spinning speed, and interrupted decoupling experiments three protonated and one nonprotonated group of signals are identified in the CP spectra for all samples. Short polarization-transfer rates, TNH, for nonprotonated nitrogen in uncured and lightly cured samples reveal more effective hydrogen bonding in viscous and rubber-like resins compared to the highly cured rigid resins. The rigid portions of the resins exhibit longer T1 and short T relaxation times, while the shorter T1 times and longer T times are associated with the more mobile portion of samples. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.  相似文献   

11.
The 15N NMR chemical shifts of N7‐ and N9‐substituted purine derivatives were investigated systematically at the natural abundance level of the 15N isotope. The NMR chemical shifts were determined and assigned using GSQMBC, GHMBC, GHMQC and GHSQC experiments in solution. 15N cross‐polarization magic angle spinning data were recorded for selected compounds in order to study the principal values of the 15N chemical shifts. Geometric parameters obtained by using RHF/6–31G** and single‐crystal x‐ray structural analysis were used to calculate the chemical‐shielding constants (GIAO and IGLO) which were then used to assign the nitrogen resonances observed in the solid‐state NMR spectra and to determine the orientation of the principal components of the shift tensors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The proposed homonuclear coupling sign edited (HCSE) experiment can detect signed homonuclear couplings between low abundant nuclei like 13C, 29Si and 15N in linear spin systems, that is, in systems where two nuclei are coupled by the measured coupling, and one of them is coupled by a second coupling to a nucleus of different kind. The third nucleus is usually high abundant hydrogen. Two spectra are measured during the HCSE experiment. Their weighed sum and difference yield two other spectra, one containing peaks coupled only by positive measured couplings and the other having peaks coupled by negative measured couplings. The usual E.COSY‐type experiment requires all three couplings in the three spin system (triangular spin system) and not only two couplings as the HCSE experiment. The experiment was successfully tested on known carbon–carbon and silicon–silicon two bond couplings. A set of six simple siloxanes with |2J(Si‐O‐Si)| couplings ranging from 0.5 to 9.0 Hz was measured for the first time, and all the couplings were found to be positive. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A variety of experimental solid-state nuclear magnetic resonance (NMR) techniques has been used to characterize each of the elements in 2-aminoethane sulfonic acid (taurine). A combination of (15)N cross-polarization magic angle spinning (CPMAS), (14)N ultrawideline, and (14)N overtone experiments enabled a determination of the relative orientation of the nitrogen electric field gradient and chemical shift tensors. (17)O spectra recorded from an isotopically enriched taurine sample at multiple magnetic fields allowed the three nonequivalent oxygen sites to be distinguished, and NMR parameters calculated from a neutron diffraction structure using density functional theory allowed the assignment of the (17)O parameters to the correct crystallographic sites. This is the first time that a complete set of (17)O NMR tensors are reported for a sulfonate group. In combination with (1)H and (13)C MAS spectra, as well as a previously reported (33)S NMR study, this provides a very broad set of NMR data for this relatively simple organic molecule, making it a potentially useful structure on which to test DFT calculation methods (particularly for the quadrupolar nuclei (14)N, (17)O, and (33)S) or NMR crystallography approaches.  相似文献   

14.
Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.  相似文献   

15.
13C, 15N CP/MAS, including 1H–13C and 1H–15N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa‐macrolides as 3‐formylrifamycin SV (1) and its derivatives (2–6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3OH and 2/CH3CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV–vis data recorded for them were different in 300–375 nm region. Detailed solid state 13C and 15N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3‐formylrifamycin SV (1) and its amino derivatives (3–6), can occur in pure non‐ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3–6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3‐formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi‐empirical level of theory, allowed visualization the most energetically favorable non‐ionic and zwitterionic forms of 1–6 antibiotics, strongly stabilized via intramolecular H‐bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A series of 3‐substituted 1,2,3‐benzotriazin‐4‐ones, 1 and 2, were synthesized by standard methods and the 15N NMR spectra were recorded. All spectra were obtained using the natural abundance of the nitrogen‐15 isotope. The chemical shifts appear in the normal range for N‐1, N‐2 and N‐3 of the triazine ring, and also correlate with the chemical shifts in the spectra of the imidazolotriazinone, 4, and the imidazolotetrazinone, 5. Significantly, the spectra of 1a, 2 and 4, recorded with full NOE, show inversion of the singlet assigned to N‐3, demonstrating that these compounds exist in the tautomeric form shown. The structure of the 4‐iminobenzotriazinone (3) was confirmed by this 15N NMR analysis. The spectrum shows a signal for the NH‐bearing imino‐nitrogen atom, which is an inverted singlet in the NOE spectrum, whereas the signal from the N‐3 atom of 3 is not inverted in the NOE spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Fumaric, malonic, maleic, and hydromuconic (HOOCCH2(CH)2CH2COOH) acids were used to prepare a series of hydrogen-bonded adducts or salts, depending on whether acid-base proton transfer takes place, with the dibase [N(muCH2CH2)3N] in various stoichiometric ratios. The resulting compounds have been investigated by using the 1H MAS, 15N, and 13C cross polarisation magic-angle spinning (CPMAS) methods and discussed in relation to X-ray diffraction studies to ascertain the nature of the O-HO, NH-O, and N+-HO- hydrogen bonds between the various species. In addition, two polymorphic forms of the malonic compound and a hydrate in the maleic case were examined. We also present the correlations between the chemical shifts of the hydrogen-bonded protons and those from the proton transfer reaction (acid-to-base) with the heavy atom distances. The dynamic behaviour in the solid-state of the [N(muCH2CH2)3N] adducts with fumaric 2:1, maleic 1:1 hydrate, and hydromuconic acids, and a malonate 2:1 polymorph adduct have been investigated by using variable-temperature 1H spin-lattice relaxation times. A substantial agreement between the activation energies obtained from fitting the T1 data and the results of potential energy barrier calculations demonstrates that the facile reorientation of the [N(muCH2CH2)3N] molecule occurs in several of the adducts.  相似文献   

18.
High-resolution solid-state magic angle spinning 73Ge NMR spectra of hexavalent germanium compounds, i.e. diiodogermylene (1a) and bis(1-pyrrolyl)(meso-tetraphenylporphyrinato)germanium (3a), were determined. To the best of our knowledge, this is the first example of high-resolution solid-state 73Ge NMR spectra of hexacoordinated germanium nuclei. The symmetry requirement for observation of high-resolution solid-state 73Ge NMR spectra is discussed.  相似文献   

19.
This paper presents the high‐resolution 13C and 15N cross‐polarization magic angle spinning (CP/MAS) NMR spectra of three natural melanin solids: Sepia officinalis melanin, Sepia officinalis melanin free acid (MFA) and Human hair melanin. The functional group characterization of Human hair melanin by NMR is the first to date and the 13C CP/MAS NMR spectra reported here show improved resolution of chemically inequivalent sites. The observed spectral regions of the solid melanin samples can be assigned to the postulated structural unit of the polymer chain of Sepia MFA derived from solution‐state NMR studies. To assist in the assignment of functional groups in the spectra, the solid‐state CP/MAS NMR spectra are compared with high‐resolution 13C and 15N CP/MAS spectra of four model compounds, L ‐dopa, dopamine, 2‐methoxycarbonyl‐3‐ethoxycarbonyl‐4‐methylpyrrole and ethyl 5,6‐dimethoxyindole‐2‐carboxylate. To aid further in the assignment of protonated and non‐protonated carbon atoms, CP contact time dependence and non‐quaternary carbon suppression (NQS) experiments were performed on the melanin samples. The 15N CP/MAS spectra of the melanin samples confirm the presence of indole and pyrrole units in the melanin polymer chain. The NMR peaks observed in all of the melanin samples are relatively broad, presumably owing to the presence of free radicals. Electron spin resonance (ESR) data shows that all three melanin samples contain localized free radicals (g = 2.007), with the Sepia melanin containing a 10‐fold higher free radical density than Human hair melanin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号