首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this work, we analyze a Stokes problem arising in the study of the Navier–Stokes flow of a liquid jet. The analysis is accomplished by showing that the relevant Stokes operator accounting for a free surface gives rise to a sectorial operator which generates an analytic semigroup of contractions. Estimates on solutions are established using Fourier methods. The result presented is the key ingredient in a local existence and uniqueness proof for solutions of the full nonlinear problem.  相似文献   

3.
We study a nonhomogeneous boundary-value problem for the steady-state Navier–Stokes equations in a two-dimensional exterior domain with two orthogonal symmetry axes. The existence of a solution which tends to zero uniformly at infinity is proved under suitable parity conditions on the data of the problem. The result is obtained for arbitrary values of the flux of the boundary datum.  相似文献   

4.
The aim of this paper is to prove a uniqueness criterion for solutions to the stationary Navier–Stokes equation in 3-dimensional exterior domains within the class uL3, with ?uL3/2,, where L3, and L3/2, are the Lorentz spaces. Our criterion asserts that if u and v are the solutions, u is small in L3, and u,vLp for some p>3, then u=v. The proof is based on analysis of the dual equation with the aid of the bootstrap argument.  相似文献   

5.
We present a uniqueness theorem for time-periodic solutions to the Navier–Stokes equations in unbounded domains. Thus far, results on the uniqueness of time-periodic solutions to the Navier–Stokes equations in unbounded domain, roughly speaking, have only found that a small time-periodic L n -solution is unique within the class of solutions which have sufficiently small L (L n )-norm. In this paper, we show that a small time-periodic L n -solution is unique within the class of all time-periodic L n -solutions, which contains large solutions. We also consider the uniqueness of solutions in weak-L n space. The proof of the present uniqueness theorem is based on the method of dual equations.   相似文献   

6.
Employing the approach of Takeshita (Pacific J Math 157:151–158, 1993), we give an elementary proof of the invalidity of the Leray–Hopf Extension Condition for certain multiply connected bounded domains of \({\mathbb {R}}^{n}\) , \(n=2,3\) , whenever the flow through the different components of the boundary is non-zero. Our proof is alternative to and, to an extent, more direct than the recent one proposed by Heywood (J Math Fluid Mech 13:449–457, 2011).  相似文献   

7.
We consider an inverse problem of determining a spatially varying factor in a source term in the non-stationary linearized Navier–Stokes equations by observation data in an arbitrarily fixed sub-domain over some time interval. We prove the Lipschitz stability provided that the t-dependent factor satisfies a non-degeneracy condition. Our proof is based on a new Carleman estimate for the linearized Navier–Stokes equations.  相似文献   

8.
We present a sufficient condition for the energy equality of Leray–Hopf’s weak solutions to the Navier–Stokes equations in general unbounded 3-dimensional domains.  相似文献   

9.
Consider the nonstationary Navier–Stokes equations in Ω × (0, T), where Ω is a general unbounded domain with non-compact boundary in R 3. We prove the regularity of suitable weak solutions for large |x|. It should be noted that our result also holds near the boundary. Our result extends the previous ones by Caffarelli–Kohn–Nirenberg in R 3 and Sohr-von Wahl in exterior domains to general domains.  相似文献   

10.
We study existence of global in time solutions to the Navier–Stokes equations in a two dimensional domain with an unbounded boundary. The problem is considered with slip boundary conditions involving nonzero friction. The main result shows a new L-bound on the vorticity. A key element of the proof is the maximum principle for a reformulation of the problem. Under some restrictions on the curvature of the boundary and the friction the result for large data (including flux) with the infinite Dirichlet integral is obtained.Received: October 31, 2002; revised: September 17, 2003  相似文献   

11.
We study existence of global in time solutions to the Navier–Stokes equations in a two dimensional domain with an unbounded boundary. The problem is considered with slip boundary conditions involving nonzero friction. The main result shows a new L-bound on the vorticity. A key element of the proof is the maximum principle for a reformulation of the problem. Under some restrictions on the curvature of the boundary and the friction the result for large data (including flux) with the infinite Dirichlet integral is obtained.  相似文献   

12.
The existence of global weak renormalized solutions to the evolution flow problems for compressible Navier–Stokes equations is established. The in/out flow problem in a bounded domain in three spatial dimensions is considered. A general mathematical theory for the flow problem is developed. Bibliography: 15 titles.  相似文献   

13.
14.
Let u be a weak solution of the Navier–Stokes equations in an exterior domain ${\Omega \subset \mathbb{R}^3}Let u be a weak solution of the Navier–Stokes equations in an exterior domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} and a time interval [0, T[ , 0 < T ≤ ∞, with initial value u 0, external force f = div F, and satisfying the strong energy inequality. It is well known that global regularity for u is an unsolved problem unless we state additional conditions on the data u 0 and f or on the solution u itself such as Serrin’s condition || u ||Ls(0,T; Lq(W)) < ¥{\| u \|_{L^s(0,T; L^q(\Omega))} < \infty} with 2 < s < ¥, \frac2s + \frac3q = 1{2 < s < \infty, \frac{2}{s} + \frac{3}{q} =1}. In this paper, we generalize results on local in time regularity for bounded domains, see Farwig et al. (Indiana Univ Math J 56:2111–2131, 2007; J Math Fluid Mech 11:1–14, 2008; Banach Center Publ 81:175–184, 2008), to exterior domains. If e.g. u fulfills Serrin’s condition in a left-side neighborhood of t or if the norm || u ||Ls(t-d,t; Lq(W)){\| u \|_{L^{s'}(t-\delta,t; L^q(\Omega))}} converges to 0 sufficiently fast as δ → 0 + , where ${\frac{2}{s'} + \frac{3}{q} > 1}${\frac{2}{s'} + \frac{3}{q} > 1}, then u is regular at t. The same conclusion holds when the kinetic energy \frac12|| u(t) ||22{\frac{1}{2}\| u(t) \|_2^2} is locally H?lder continuous with exponent ${\alpha > \frac{1}{2}}${\alpha > \frac{1}{2}}.  相似文献   

15.
We consider the stationary incompressible Navier–Stokes equation in the half-plane with inhomogeneous boundary condition. We prove the existence of strong solutions for boundary data close to any Jeffery–Hamel solution with small flux evaluated on the boundary. The perturbation of the Jeffery–Hamel solution on the boundary has to satisfy a nonlinear compatibility condition which corresponds to the integral of the velocity field on the boundary. The first component of this integral is the flux which is an invariant quantity, but the second, called the asymmetry, is not invariant, which leads to one compatibility condition. Finally, we prove the existence of weak solutions, as well as weak–strong uniqueness for small data and provide numerical simulations.  相似文献   

16.
This paper concerns the Cauchy problem of the barotropic compressible Navier–Stokes equations on the whole two-dimensional space with vacuum as far field density. In particular, the initial density can have compact support. When the shear and the bulk viscosities are a positive constant and a power function of the density respectively, it is proved that the two-dimensional Cauchy problem of the compressible Navier–Stokes equations admits a unique local strong solution provided the initial density decays not too slow at infinity. Moreover, if the initial data satisfy some additional regularity and compatibility conditions, the strong solution becomes a classical one.  相似文献   

17.
ABSTRACT

We prove the local solvability of the p-adic analog of the Navier–Stokes equation. This equation describes, within the p-adic model of porous medium, the flow of a fluid in capillaries.  相似文献   

18.
We consider the steady Navier–Stokes equations in the punctured regions (?) Ω?=?Ω 0 \ {o} (with {o}Ω 0) and (??) $ \varOmega ={{\mathbb{R}}^2}\backslash \left( {{{\overline{\varOmega}}_0}\cup \left\{ o \right\}} \right) $ (with $ \left\{ o \right\}\notin {{\overline{\varOmega}}_0} $ ), where Ω 0 is a simple connected Lipschitz bounded domain of $ {{\mathbb{R}}^2} $ . We regard o as a sink or a source in the fluid. Accordingly, we assign the flux $ \mathcal{F} $ through a small circumference surrounding o and a boundary datum a on Γ?=? 0 such that the total flux $ \mathcal{F}+\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} $ is zero in case (?). We prove that if $ \left| \mathcal{F} \right|<2\pi \nu $ and $ \left| \mathcal{F} \right|+\left| {\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} } \right|<2\pi \nu $ in (?) and (??), respectively, where ν is the kinematical viscosity, then the problem has a C solution in Ω, which behaves at o like the gradient of the fundamental solution of the Laplace equation.  相似文献   

19.
We study the behavior of the set of time-periodic solutions of the three-dimensional system of Navier–Stokes equations in a bounded domain as the frequency of the oscillations of the right-hand side tends to infinity. It is established that the set of periodic solutions tends to the solution set of the homogenized stationary equation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号