首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick’s law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.  相似文献   

2.
We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered.  相似文献   

3.
Heat and charge transport were used to probe the magnetic field-tuned quantum critical point in the heavy-fermion metal CeCoIn5. A comparison of electrical and thermal resistivities reveals three characteristic energy scales. A Fermi-liquid regime is observed below T(FL), with both transport coefficients diverging in parallel and T(FL) -->0 as H --> Hc, the critical field. The characteristic temperature of antiferromagnetic spin fluctuations, T(SF), is tuned to a minimum but finite value at Hc, which coincides with the end of the T-linear regime in the electrical resistivity. A third temperature scale, T(QP), signals the formation of quasiparticles, as fermions of charge e obeying the Wiedemann-Franz law. Unlike T(FL), it remains finite at Hc, so that the integrity of quasiparticles is preserved, even though the standard signature of Fermi-liquid theory fails.  相似文献   

4.
《Molecular physics》2012,110(11-12):1069-1079
We present a detailed study on the finite size scaling behaviour of thermodynamic properties for small systems of particles embedded in a reservoir. Previously, we derived that the leading finite size effects of thermodynamic properties for small systems scale with the inverse of the linear length of the small system, and we showed how this can be used to describe systems in the thermodynamic limit [Chem. Phys. Lett. 504, 199 (2011)]. This approach takes into account an effective surface energy, as a result of the non-periodic boundaries of the small embedded system. Deviations from the linear behaviour occur when the small system becomes very small, i.e. smaller than three times the particle diameter in each direction. At this scale, so-called nook- and corner effects will become important. In this work, we present a detailed analysis to explain this behaviour. In addition, we present a model for the finite size scaling when the size of the small system is of the same order of magnitude as the reservoir. The developed theory is validated using molecular simulations of systems containing Lennard-Jones and WCA particles, and leads to significant improvements over our previous approach. Our approach eventually leads to an efficient method to compute the thermodynamic factor of macroscopic systems from finite size scaling, which is for example required for converting Fick and Maxwell–Stefan transport diffusivities.  相似文献   

5.
Kinetic equations with relaxation collision kernels are considered under the basic assumption of two collision invariants, namely mass and energy. The collision kernels are of BGK-type with a general local Gibbs state, which may be quite different from the Gaussian. By the use of the diffusive length/time scales, energy transport systems consisting of two parabolic equations with the position density and the energy density as unknowns are derived on a formal level. The H theorem for the kinetic model is presented, and the entropy for the energy transport systems, which is inherited from the kinetic model, is derived. The energy transport systems for specific examples of the global Gibbs state, such as a power law with negative exponent, a cut-off power law with positive exponent, the Maxwellian, Bose–Einstein, and Fermi–Dirac distributions, arepresented. MSC classification (2000): Primary: 82C40, 35B40; Secondary: 35K55, 45K05, 82D05, 85A05x  相似文献   

6.
In this paper, we consider periodically inhomogeneous Markov chains, which can be regarded as a simple version of physical model—Brownian motors. We introduce for them the concepts of periodical reversibility, detailed balance, entropy production rate and circulation distribution. We prove the equivalence of the following statements: The time-periodic Markov chain is periodically reversible; It is in detailed balance; Kolmogorov's cycle condition is satisfied; Its entropy production rate vanishes; Every circuit and its reversed circuit have the same circulation weight. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors, i.e. the existence of net circulation, can occur only in nonequilibrium and irreversible systems. Moreover, we verify the large deviation property and the Gallavotti-Cohen fluctuation theorem of sample entropy production rates of the Markov chain.  相似文献   

7.
An asynchronous algorithm for the integration of reaction-diffusion equations for inhomogeneous excitable media is described. Since many physical systems are inhomogeneous where either the local kinetics or the diffusion or conduction properties vary significantly in space, integration schemes must be able to account for wide variations in the temporal and spatial scales of the solutions. The asynchronous algorithm utilizes a fixed spatial grid and automatically adjusts the time step locally to achieve an efficient simulation where the errors in the solution are controlled. The scheme does not depend on the specific form of the local kinetics and is easily applied to systems with complex geometries. (c) 2000 American Institute of Physics.  相似文献   

8.
The effect of finite Reynolds numbers and/or internal intermittency on the total kinetic energy and scalar energy transfers is examined in detail. For this purpose, two distinct models for velocity and scalar energy transfer are proposed in the specific context of freely decaying isotropic turbulence. The first one extends the already existing dynamical models (hereafter DYM, i.e. based on transport equations originated in Navier–Stokes and advection-diffusion transport equations). The second one relies on the characteristic time of the strain at a specific scale (hereafter SBM). Both models account for the Reynolds number dependence of the scaling exponent of the second-order structure functions, over a range of scales where such exponents may be defined, i.e. a restricted scaling range (RSR). Therefore, the models developed aim at reproducing the energy transfer over the RSR. The predicted energy transfer is very sensible to variations of the scaling exponent, especially at low Reynolds numbers. The approach towards the asymptotic 4/3 law is closely reproduced by the two models. The dynamical model reproduces the experimental results accurately especially in the vicinity of the Taylor microscale, while the SBM agrees almost perfectly with measurements at nearly all scales.  相似文献   

9.
Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems, for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but-quantally shows resonant transport, no saturation, and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.  相似文献   

10.
A homogeneous medium, consisting of nonlinear elements, demonstrating transition to chaos via period-doubling bifurcations, is considered. The coupling between the elements is supposed to be of a dissipative type, i.e. it tends to equalize their instantaneous states. Using the renormalization group approach, the following scaling law for weakly inhomogeneous states near the critical point is obtained: at each period doubling the spatial scale increases by β=√2. On the basis of this law the scaling hypotheses for the transition to chaos in the semi-infinite and finite systems are proposed. The scaling properties are verified by the numerical calculations with a simple model.  相似文献   

11.
Area-preserving nontwist maps, i.e., maps that violate the twist condition, arise in the study of degenerate Hamiltonian systems for which the standard version of the Kolmogorov-Arnold-Moser (KAM) theorem fails to apply. These maps have found applications in several areas including plasma physics, fluid mechanics, and condensed matter physics. Previous work has limited attention to maps in 2-dimensional phase space. Going beyond these studies, in this paper, we study nontwist maps with many-degrees-of-freedom. We propose a model in which the different degrees of freedom are coupled through a mean-field that evolves self-consistently. Based on the linear stability of period-one and period-two orbits of the coupled maps, we construct coherent states in which the degrees of freedom are synchronized and the mean-field stays nearly fixed. Nontwist systems exhibit global bifurcations in phase space known as separatrix reconnection. Here, we show that the mean-field coupling leads to dynamic, self-consistent reconnection in which transport across invariant curves can take place in the absence of chaos due to changes in the topology of the separatrices. In the context of self-consistent chaotic transport, we study two novel problems: suppression of diffusion and breakup of the shearless curve. For both problems, we construct a macroscopic effective diffusion model with time-dependent diffusivity. Self-consistent transport near criticality is also studied, and it is shown that the threshold for global transport as function of time is a fat-fractal Cantor-type set.  相似文献   

12.
We construct a mathematically well–defined framework for the kinematics of Hamiltonian QCD on an infinite lattice in ${\mathbb{R}^3}$ , and it is done in a C*-algebraic context. This is based on the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph e.a.. To extend this model to an infinite lattice, we need to take an infinite tensor product of nonunital C*-algebras, which is a nonstandard situation. We use a recent construction for such situations, developed by Grundling and Neeb. Once the field C*-algebra is constructed for the fermions and gauge bosons, we define local and global gauge transformations, and identify the Gauss law constraint. The full field algebra is the crossed product of the previous one with the local gauge transformations. The rest of the paper is concerned with enforcing the Gauss law constraint to obtain the C*-algebra of quantum observables. For this, we use the method of enforcing quantum constraints developed by Grundling and Hurst. In particular, the natural inductive limit structure of the field algebra is a central component of the analysis, and the constraint system defined by the Gauss law constraint is a system of local constraints in the sense of Grundling and Lledo. Using the techniques developed in that area, we solve the full constraint system by first solving the finite (local) systems and then combining the results appropriately. We do not consider dynamics.  相似文献   

13.
The atomic size mismatch between different binary semiconductors has been long known to limit their mutual solubility, leading instead to phase separation into incoherent phases, forming inhomogeneous mixtures that severely limit technological applications that rely on carrier transport. We show here that this atomic size mismatch can lead, under coherent conditions, to the formation of a homogeneous alloy with characteristic (201) two-monolayer ordering. This occurs because such specific layer arrangement corresponds to a unique strain-minimizing network in tetrahedral systems.  相似文献   

14.
15.
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.  相似文献   

16.
We discuss transport and localization properties on the insulating side of the disorder dominated superconductor‐insulator transition, described in terms of the dirty boson model. Analyzing the spectral properties of the interacting bosons in the absence of phonons, we argue that the Bose glass phase admits three distinct regimes. For strongest disorder the boson system is a fully localized, perfect insulator at any temperature. At smaller disorder, only the low temperature phase exhibits perfect insulation while delocalization takes place above a finite temperature. We argue that a third phase must intervene between these perfect insulators and the superconductor. This conducting Bose glass phase is characterized by a mobility edge in the many body spectrum, located at finite energy above the ground state. In this insulating regime purely electronically activated transport occurs, with a conductivity following an Arrhenius law at asymptotically low temperatures, while a tendency to superactivation is predicted at higher T. These predictions are in good agreement with recent transport experiments in highly disordered films of superconducting materials.  相似文献   

17.
We investigate the scaling of the entanglement entropy in an infinite translational invariant fermionic system of any spatial dimension. The states under consideration are ground states and excitations of tight-binding Hamiltonians with arbitrary interactions. We show that the entropy of a finite region typically scales with the area of the surface times a logarithmic correction. Thus, in contrast with analogous bosonic systems, the entropic area law is violated for fermions. The relation between the entanglement entropy and the structure of the Fermi surface is discussed, and it is proven that the presented scaling law holds whenever the Fermi surface is finite. This is, in particular, true for all ground states of Hamiltonians with finite range interactions.  相似文献   

18.
The average densities of currents and charges induced by a weak electromagnetic field in spatially inhomogeneous systems at a finite temperature are calculated. The Kubo formula for the electrical conductivity tensor is generalized to spatially inhomogeneous systems and spatially inhomogeneous fields. The contributions containing electric fields and derivatives of the fields with respect to coordinates are separated. It is shown that semiconductor quantum wells, wires, and dots can be treated as spatially inhomogeneous systems.  相似文献   

19.
We investigate the effect of heat dissipation in inhomogeneous cosmologies by invoking the full causal theory of heat transport within the framework of extended irreversible thermodynamics. This work extends earlier results which were obtained using the truncated causal heat transport equation. In particular, we show that the truncation of the heat transport equation implicitly defines a temperature law which leads to pathological behaviour in the temperature of the evolving cosmic fluid.  相似文献   

20.
In analogy to real magnetic field, the pseudo-magnetic field (PMF) induced by inhomogeneous strain can also formthe Landau levels and edge states. In this paper, the transport properties of graphene under inhomogeneous strain arestudied. We find that the Landau levels have non-zero group velocity, and construct one-dimensional conducting channels.In addition, the edge states and the Landau level states in PMF are both fragile under disorder. We also confirm that thebackscattering of these states could be suppressed by applying a real magnetic filed (MF). Therefore, the transmissioncoefficient for each conducting channel can be manipulated by adjusting the MF strength, which indicates the applicationof switching devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号